
2026/01/16 04:46 1/101 Quick history

osFree wiki - https://osfree.su/doku/

somFree Compiler and Emitter Framework

User's Guide

Introduction

somFree Compiler and Emitter Framework is a free open source binary compatible reimplementation
of IBM SOM Compiler and Emitter Framework. It is tries to be as compatible as possible on API and ABI
level.

Changes

Changes from original somFree compiler:

Most of internal structures now also present as in old IBM SOM 2.1 NT Toolkit.
New emitters:

LNK - Open Watcom WLink support.
DUMP - displays structures, available to emitter.
PAS - Pascal client support.
IPAS - Pascal implementation classes support.

SOM Compiler library now mostly documented.
SOMLINK style functions for most of SOM Compiler library added.
Emitters now IBM SOM 2.1 and IBM SOM 3.0 compatible without recompilation.
somFree Compiler supports IBM SOM 2.1, IBM SOM 3.0, and somFree 1.0 emitters.
somtShowEntry function outputs more info.
Undocumented SOMTTypes now documented.
SOMIPC now supports IDL 4.2 specification.
CORBA C Language Mapping Specification 1.0 now supported by default instead of SOM C
Language mapping.
Added support of OIDL files

somFree Compiler

The somFree Compiler is a tool to produce various file formats from Interface Definition Language
(IDL) files or Object Interface Definition Language (OIDL) files. somFree Compiler reads IDL or OIDL file
and produces an abstract graph tree. Using abstract tree, somFree Compiler generates an object
graph tree. After the object graph is ready, somFree Compiler produces an output using template.

The somFree Compiler uses DLL-name based loading of classes libraries (other programs can user
another approach, like WPS does. WPS uses an Interface Repository to find corresponding class). Most
of the somFree Compiler classes libraries it is implementation of corresponding emitter. Emitters can
be created with help of Emitter Framework.

Last update: 2024/09/18 15:00 en:docs:tk:som https://osfree.su/doku/doku.php?id=en:docs:tk:som&rev=1726671600

https://osfree.su/doku/ Printed on 2026/01/16 04:46

somFree Compiler actually is a client program which uses Emitter Framework classes. somFree
Compiler is open source program with an open architecture. The only things that couldn't be easily
extended are parser, abstract graph builder and object graph builder. Other things can be shadowed
and replaced by our own.

Let's look at somFree Compiler command line syntax to understand how to produce corresponding
skeleton code from somFree Compiler template (below is somFree Compiler help screen):

sc [-C:D:E:I:S:VU:cd:hi:m:prsvw] f1 f2 ...
Where:
 -C <n> - size of comment buffer (default: 200000)
 -D <DEFINE> - same as -D option for cpp.
 -E <var>=<value> - set environment variable.
 -I <INCLUDE> - same as -I option for cpp.
 -S <n> - size of string buffer (default: 200000)
 -U <UNDEFINE> - same as -U option for cpp.
 -V - show version number of compiler.
 -c - ignore all comments.
 -d <dir> - output directory for each emitted file.
 -h - this message.
 -i <file> - use this file name as supplied.
 -m <name[=value]> - add global modifier.
 -p - shorthand for -D__PRIVATE__.
 -r - check releaseorder entries exist (default: FALSE).
 -s <string> - replace SMEMIT variable with <string>
 -u - update interface repository.
 -v - verbose debugging mode (default: FALSE).
 -w - don't display warnings (default: FALSE).

Modifiers:
 addprefixes : adds `functionprefix' to method names in template file
 [no]addstar : [no]add `*' to C bindings for interface references.
 corba : check the source for CORBA compliance.
 csc : force running of OIDL compiler.
 emitappend : append the emitted files at the end of the existing
file.
 noheader : don't add a header to the emitted file.
 noint : don't warn about "int" causing portability problems.
 nolock : don't lock the IR during update.
 nopp : don't run the source through the pre-processor.
 notc : don't use typecodes for emit information.
 nouseshort : don't generate short names for types.
 pp=<path> : specify a local pre-processor to use.
 tcconsts : generate CORBA TypeCode constants.

Note: All command-line modifiers can be set in the environment
by changing them to UPPERCASE and preappending "SM" to them.

Environment Variables:
 SMEMIT=[h;ih;c;xh;xih;xc;def;ir;pdl]
 : emitters to run (default : h;ih).

2026/01/16 04:46 3/101 Quick history

osFree wiki - https://osfree.su/doku/

 SMINCLUDE=<dir1>[;<dir2>]+
 : where to search for .idl and .efw files.
 SMKNOWNEXTS=ext[;ext]+
 : add headers to user written emitters.
 SMTMP=<dir>
 : directory to hold intermediate files.
 SOMIR=<path>[;<path>]+
 : list of IRs to search.

Pragmas:
 #pragma somemittypes on : turn on emission of global types.
 #pragma somemittypes off : turn off emission of global types.
 #pragma modifier <modifier stm>; : instead of modifier statement.

Now let's explain some command line switches deeper.

First of the most interesting switch is -s. By default somFree Compiler uses SMEMIT environment
variable to determine which emitter to use. Look at emit*.dll files for corresponding emitter. Using
switch -s you can change default logic and select one-time emitter instead of global emitters. In easy
situation you need only one emitter (say, C emitter). In complex situations you need use more
emitters (say, C, H, DEF and IH emitters). You can create your own emitter to produces, for example,
some sort of documentation and other stuff.

Another interesting switch is -m. Using -m you can set and/or unset so named modifiers. Modifiers
allow you to change default behaviour of emitter and compiler. As example, by default compiler adds
new methods or modifies existent. You can tell compiler just add new text to end of file. Modifiers can
control emitters. addstart and noaddstar controls C emitter to add or not add pointer sign (*) to
references of objects.

Switch -u adds or updates Interface Repository with new information about class interface. Interface
repository filename controlled by SOMIR environment variable. This thing useful to add info for Object
REXX access and other things which uses Interface Repository.

Other switches are like for standard C/C++ preprocessor and not described here.

Now let's play with somFree Compiler. Most often, you need to create interface files for C/C++ client
programs. Usually you need to call the SOM Compiler as following:

sc -sdef somobj.idl
sc -sh somobj.idl

In case of C++ you need to call:

sc -sdef somobj.idl
sc -sxh somobj.idl

Of course, not very nice to call somFree Compiler so often. And somFree Compiler provides such
functionality:

sc -sdef;h;xh somobj.idl

Last update: 2024/09/18 15:00 en:docs:tk:som https://osfree.su/doku/doku.php?id=en:docs:tk:som&rev=1726671600

https://osfree.su/doku/ Printed on 2026/01/16 04:46

The above command will do exactly as all recent commands.

The above emitters were designed for IBM toolset. Nowadays, developers also use GCC or Open
Watcom Compilers. The problem here is that Watcom Linker doesn't support .DEF files, but has its
own .LNK linker files. In case of one or two classes no many problems to convert .DEF files to .LNK
files manually. But such approach just ugly for MUCH classes. So, one of good solution is write REXX
script for DEF→LNK conversion. But somFree Compilers contains Open Watcom Linker Emitter for such
approaches.

Now let's talk about internals of somFree Compiler. somFree Compiler designed in the way as most of
C compilers implemented. It is exists of following parts:

IDL Preprocessor
IDL Parser
OIDL Preprocessor
OIDL Parser
Emitter Framework

somFree Compiler first calls IDL or OIDL Preprocessor. Output of IDL/OIDL Preprocessor goes to
IDL/OIDL Parser. IDL/OIDL Parser creates Object tree from IDL/OIDL source. Object tree, using
templates and emitters, stored to file.

As you see, most of the parts can be extended or replaced by its own implementation. For example,
we can reuse CPP instead of SPP. Why not? Just support required command-line switches for
compatibility. Also, default emitters can be rewritten. For C and C++ emitter it is not so hard. For
other, more structured languages, like Pascal, Modula, etc. emitter creation is more hard work, but it
is also possible.

Actually, we can extend and rewrite somFree Compiler as we want.

Usage of somFree Compiler will not be problem for most of you. But understanding some details
about compiler internals makes life easer.

SOM Interface Definition Language

Latest IBM SOM 3.0 supports CORBA IDL mostly at level of CORBA 1.1. somFree supports CORBA IDL
4.2 with all extensions found in SOM IDL.

Include Directives (optional)
Type and Constant Declarations (optional)
Exception Declarations (optional)
Interface Declarations (optional)
Module declaration (optional)

Let's try to define our class interface.

Interface Definition Language (IDL) is the core of System Object Model. All classes have definition of
its interface via IDL. With help of somFree Compiler IDL file can be translated to various formats,
including various language bindings. For example, to produce C header you can run

2026/01/16 04:46 5/101 Quick history

osFree wiki - https://osfree.su/doku/

sc -s"h" somcls.idl

to produce DEF file you can run

sc -s"def" somcls.idl

somFree Compiler uses emitter to produce corresponding language binding. You can create new
bindings emitter using Emitter Framework.

First of all, think about your class. What it must do? Define them in terms of object. Propose attributes
and methods of class.

Ok. Imagine, we need class to have access to Java objects. Let's write a class interface in terms of
Interface Definition Language.

 #include <somobj.idl>

 interface JavaObject : [[SOMObject]]
 {
 implementation
 {
 somDefaultInit: override;
 // Init Java Virtual Machine (if no current) and create Java object
 somDefaultDestruct: override;
 // Destruct Java object and close Java Virtual Machine (if needed)
 }
 }

As you can see, no many problems. Syntax of IDL too closest to C-like languages. First thing you need
is to include definitions of parent classes. In our case it is 'SOMObject' definition. Generic Java object
doesn't need to have any methods. Only thing 'JavaObject' will do its check for existence of Java
Virtual Machine and execution of it if required.

On object destruction checks is Java Virtual Machine still required will be done and it will be destroyed
if not required. Also same constructor and destructor will call corresponding constructor and
destructor of Java object.

Classic IDL file contains definitions like

 interface <class> : <parent_class>
 {
 attribute <type> <name>

 <type> <method>(<parameters>)
 }

[http://www.omg.org OMG] IDL doesn't support methods override. SOM IDL has such feature (and
incompatibility with OMG CORBA). This is done via keyword 'implementation'. To solve problems
with other IDL compilers such part must be wrapped to #ifdef structure:

 #include <somobj.idl>

https://osfree.su/doku/doku.php?id=en:docs:tk:java_virtual_machine
https://osfree.su/doku/doku.php?id=en:docs:tk:java_virtual_machine
http://www.omg.org

Last update: 2024/09/18 15:00 en:docs:tk:som https://osfree.su/doku/doku.php?id=en:docs:tk:som&rev=1726671600

https://osfree.su/doku/ Printed on 2026/01/16 04:46

 interface JavaObject : [[SOMObject]]
 {

 #ifdef __SOMIDL__
 implementation
 {
 somDefaultInit: override;
 // Init Java Virtual Machine (if no current) and create Java object
 somDefaultDestruct: override;
 // Destruct Java object and close Java Virtual Machine (if needed)
 }
 #endif
 }

Such approach well known in C-world, but also have some problems. For example, IDL of Document
Object Model (DOM) (Yes, [http://www.w3.org W3C] DOM uses same IDL as SOM and CORBA) has
attribute 'implementation'. As result, somFree Compiler has some problems with IDL compilation.

As a first step we'll create SOM class interface for java.lang.Object. It can be done with help of javah
tool.

javah -jni java.lang.Object

As result you'll have such file:

 /* DO NOT EDIT THIS FILE - it is machine generated */
 #include <jni.h>
 /* Header for class java_lang_Object */

 #ifndef _Included_java_lang_Object
 #define _Included_java_lang_Object
 #ifdef __cplusplus
 extern "C" {
 #endif
 /*
 * Class: java_lang_Object
 * Method: hashCode
 * Signature: ()I
 */
 JNIEXPORT jint JNICALL Java_java_lang_Object_hashCode
 (JNIEnv *, jobject);

 /*
 * Class: java_lang_Object
 * Method: notify
 * Signature: ()V
 */
 JNIEXPORT void JNICALL Java_java_lang_Object_notify
 (JNIEnv *, jobject);

 /*

http://www.w3.org

2026/01/16 04:46 7/101 Quick history

osFree wiki - https://osfree.su/doku/

 * Class: java_lang_Object
 * Method: notifyAll
 * Signature: ()V
 */
 JNIEXPORT void JNICALL Java_java_lang_Object_notifyAll
 (JNIEnv *, jobject);

 /*
 * Class: java_lang_Object
 * Method: registerNatives
 * Signature: ()V
 */
 JNIEXPORT void JNICALL Java_java_lang_Object_registerNatives
 (JNIEnv *, jclass);

 /*
 * Class: java_lang_Object
 * Method: wait
 * Signature: (J)V
 */
 JNIEXPORT void JNICALL Java_java_lang_Object_wait
 (JNIEnv *, jobject, jlong);

 /*
 * Class: java_lang_Object
 * Method: getClass
 * Signature: ()Ljava/lang/Class;
 */
 JNIEXPORT jclass JNICALL Java_java_lang_Object_getClass
 (JNIEnv *, jobject);

 /*
 * Class: java_lang_Object
 * Method: clone
 * Signature: ()Ljava/lang/Object;
 */
 JNIEXPORT jobject JNICALL Java_java_lang_Object_clone
 (JNIEnv *, jobject);

 #ifdef __cplusplus
 }
 #endif
 #endif

So, this header can be used to generate actual class interface using this script:

 /* REXX - our best dog */

 do while lines('java_lang_Object.h')
 s=linein('java_lang_Object.h');
 parse value s with x 'Header for class' name '*/'

Last update: 2024/09/18 15:00 en:docs:tk:som https://osfree.su/doku/doku.php?id=en:docs:tk:som&rev=1726671600

https://osfree.su/doku/ Printed on 2026/01/16 04:46

 if name\='' then
 do
 classname=strip(name)
 say '#include <JavaObject.idl>'
 say ''
 say 'interface '||classname||' : JavaObject'
 say '{'
 end
 parse value s with x 'Method:' name
 if name\='' then
 do
 /* skip 3 lines */
 s=linein('java_lang_Object.h');
 s=linein('java_lang_Object.h');
 s=linein('java_lang_Object.h');
 s2=linein('java_lang_Object.h');
 interpret("parse value s with 'JNIEXPORT' type 'JNICALL
Java_"||classname||"_' name")
 name=strip(name)
 s2=strip(s2)
 parse value s2 with start 'JNIEnv *, jobject' end
 s2=start||end
 parse value s2 with x ', ' y
 if x='(' then s2='('||y
 say ' '||type||name||' '||s2
 end
 end
 say '}'

As result, you'll have following:

 #include <JavaObject.idl>

 interface java_lang_Object : JavaObject
 {
 jint hashCode ();
 void notify ();
 void notifyAll ();
 void registerNatives (JNIEnv *, jclass);
 void wait (jlong);
 jclass getClass ();
 jobject clone ();
 }

Using such approach you can easily make SOM wrappers for all Java classes. Using Java_JNI_API you
can create Java classes and using SOM wrappers you integrate Java code to SOM-based applications.
Because SOM API more generic then Java API you can use any available language bindings for
development. Also, you can start to extend Java classes by native code with help of SOM engine.

2026/01/16 04:46 9/101 Quick history

osFree wiki - https://osfree.su/doku/

SOM Object Interface Definition Language

SOM Object Interface Definition Language is a pre-IDL object definition language used before IBM SOM
2. Since IBM SOM 2 uses CORBA IDL as defined in OMG CORBA 1.1. SOM Object Interface Definition
Language (OIDL) is a simple definition language and not recommended to use. SOM Compiler support
is only for compatibility with old source code. OIDL support implementation mostly based on [2] and
various OIDL source files found on the Web. OIDL consist of sections set:

Include section (optional)
Class section (required)
Release order section (optional)
Parent class section (required)
Passthru section (optional)
Metaclass section (optional)
Data section (optional)
Methods section (optional)

Include section

Include section is optional and contains names of OIDL files with definition of parent class,
metaclasses and private interfaces of ancestor classes.

[#include (<ancestor> | "ancestor")] *
#include (<parent> | "parent")
[#include (<metaclass> | "metaclass")]

ancestor is the name of the OIDL file containing the private part of an ancestor class' interface
needed in the definition of this class. If ancestor is enclosed in angle brackets (<>), the search for the
file will begin in system-specific locations. If parent is enclosed in double quotation marks (""), the
search for the file will begin in the local context, then move to the system-specific locations.

parent is the name of the OIDL file containing the parent class of the class for which the Include
statement is provided. If parent is enclosed in angle brackets (<>), the search for the file will begin in
system-specific locations. If parent is enclosed in double quotation marks (""), the search for the file
will begin in the local context, then move to the system-specific locations.

metaclass is the OIDL file containing the metaclass of the class for which the include statement is
provided. If metaclass is enclosed in angle brackets (<>), the search for the file will begin in system-
specific locations. If metaclass is enclosed in double quotation marks (""), the search for the file will
begin in the local context, then move to the system-specific locations.

Class section

class: name
 [, file stem = stem]
 [, external stem = stem]
 [, function prefix = prefix |
 , external prefix = prefix |

Last update: 2024/09/18 15:00 en:docs:tk:som https://osfree.su/doku/doku.php?id=en:docs:tk:som&rev=1726671600

https://osfree.su/doku/ Printed on 2026/01/16 04:46

 , classprefix = prefix]
 [, major version = number]
 [, minor version = number]
 [, global | local];
 [, classInit = function];
[description]

Release order section

release order: name [, name]* ;

Parent class section

parent [class]: name;
description

Passthru section

[passthru: language.suffix, [before | after];
line 1
line 2
endpassthru; [description]]*

Metaclass section

metaclass: name;
[description]

Data section

data:
[description1]
[declaration [, private | , public | , internal] [, class];
[description2]]*

Methods section

methods:
[description1]
[[group: name;
[description2]]
[method prototype
[, public | , private]

2026/01/16 04:46 11/101 Quick history

osFree wiki - https://osfree.su/doku/

[, method | , procedure]
[, class]
[, offset | , name lookup]
[, local | , external]
[, use = name];
[descriptionS]]*
[override: method name
[, public | , private]
[, class]
[, local | , external]
[, use = name];
[description4]] *

Programmer's Guide

Introduction

somFree compiler is a tool to convert various interface definition languages to another one or
language bindings. somFree compiler frontend is a sc or somc command which control workflow.
Because somFree compiler and Emitter Framework modeled after IBM SOM Compiler from here SOM
Compiler term will be used. Most of somFree Compiler and Emitter Framework and SOM Compiler and
Emitter Framework are same and binary compatible at the documented level. Internal structures of
somFree and IBM versions are different.

Structure of SOM Compiler and Emitter Framwork

SOM Compiler at file level consist of:

SOM Compiler frontend
sc [Linux]
sc.exe [OS/2, Windows]
somc.exe [Windows]

IDL SOM Pre-processor
somcpp [Linux]
somcpp.exe [OS/2, Windows]

IDL SOM Compiler
somipc [Linux]
somipc.exe [OS/2, Windows]

OIDL SOM Pre-processor
spp [Linux]
spp.exe [OS/2, Windows]

OIDL SOM Compiler
somopc [Linux]
somopc.exe [OS/2, Windows]

SOM Compiler Library

Last update: 2024/09/18 15:00 en:docs:tk:som https://osfree.su/doku/doku.php?id=en:docs:tk:som&rev=1726671600

https://osfree.su/doku/ Printed on 2026/01/16 04:46

somc.so [Linux]
somc.dll [OS/2, Windows]

SOM Emitter Framework
some.so [Linux]
some.dll [OS/2, Windows]

Emitters
emit*.so [Linux]
emit*.dll [OS/2, Windows]

Public IDL files generator
pdl [Linux]
pdl.exe [OS/2, Windows]

Currently SOM Compiler provides following emitters:

IDL - IDL Emitter
CSC - OIDL Emitter
SC - OIDL public emitter
GEN - Generic Emitter
IR - Interface Repository Emitter
H - C Binding public header files
C - C Binding implementation template file
IH - C Binding implementation header files
XH - C++ Binding public header files
XIH - C++ Binding implementation header files
DEF - DEF Module Definition file
LNK - LNK Module Linking file
HC
IMOD - SOM Module initialization emitter
MODS - List of class modifiers
PDL - Private IDL emitter
PH
PSC - OIDL private emitter
UC
UXC
XPH
XTM
PAS - Pascal client library for use of SOM
IPAS - Pascal implementation library to write SOM classes.

Some of Emitters uses Templates such as:

cpp.efw
ctm.efw
gen_c.efc
gen_c.efs
gen_c.efw
gen_cpp.efw
gen_def.efw
gen_emit.efc
gen_emit.efs
gen_emit.efw
gen_emit.efx

2026/01/16 04:46 13/101 Quick history

osFree wiki - https://osfree.su/doku/

gen_idl.efw
gen_make.efc
gen_make.efs
gen_make.efw
gen_make.efx
gen_mk32.efc
gen_mk32.efs
gen_mk32.efw
gen_mk32.efx
gen_mknt.efs
gen_mknt.efw
gen_mknt.efx
gen_nid.efw
gen_temp.efw
imod.efw

Interaction of SOM Compiler components

Emitter Framework is a set of classes and SOM Compiler tool. Emitter Framework is used to produce
various file formats from the SOM Interface Definition Language files. Emitter Framework classes
consist of Emitter classes and Entry classes. Classes can be shadowed. This means a programmer can
replace original classes with his own classes. So the SOM Compiler can be highly customized. The only
things hard-coded (and closed source) are the IDL file reader and abstract graph builder.

Before starting description of Emitter Framework let's talk about SOM Compiler. We already talked
briefly about SOM Compiler. But for emitters we need to know internals of SOM Compiler much better.

Let's start from visible parts of SOM Compiler that requires for its work the following files:

sc.exe, somc.dll and somc.msg - Main part of compiler.
somcpp.exe - SOM Preprocessor
somipc.exe - Goals not known. Seems just execute different emitters
emit*.dll - Emitters
*.efw - Emitter templates

sc.exe is general part of compiler. Let's try to investigate some internals of sc.exe. First of all we can
switch on verbose output and look on it:

Running shell command:
somcpp -D__OS2__ -I. -IC:\os2tk45\h -IC:\os2tk45\idl -
IC:\os2tk45\som\include \
 -D__SOMIDL_VERSION_1__ -D__SOMIDL__ -C somobj.idl >
C:\var\temp\0a500000.CTN
somipc -mppfile=C:\var\temp\0a500000.CTN -v -e emith -e emitih -e emitctm -e
emitc \
 -o somobj somobj.idl
Loading emith.
"SOMObject"
Unloading emith.
Loading emitih.

Last update: 2024/09/18 15:00 en:docs:tk:som https://osfree.su/doku/doku.php?id=en:docs:tk:som&rev=1726671600

https://osfree.su/doku/ Printed on 2026/01/16 04:46

"SOMObject"
Unloading emitih.
Loading emitctm.
"SOMObject"
Unloading emitctm.
Loading emitc.
"SOMObject"
Unloading emitc.
Removed "C:\var\temp\0a500000.CTN".

Not so many info, but some information here. If we look at SMINCLUDE environment variable:

SMINCLUDE=.;C:\os2tk45\h;C:\os2tk45\idl;C:\os2tk45\som\include;

then we will see all paths in -I option.

Considering -D is same as for CPP we can see three symbols defined: * OS2 * SOMIDL_VERSION_1 *
SOMIDL somobj.idl it is file we emitted and CTN file is output from preprocessor. The only unknown
switch is -C. After small playing we can see it means “leave comments”.

So, we can try to replace somcpp with some preprocessor. In [http://www.osfree.org osFree] project
we tried to use [http://mcpp.sourceforge.net MCPP] preprocessor. Results is well.

sc.exe reads SMINCLUDE variable and puts its content to -I options of somcpp.exe and redirect output
to temporary file.

Ok. Now we can try to detect what is somipc.exe. If we try to execute it with command line pointed
above, then we will see: Loading emith. “SOMObject” Unloading emith. Loading emitih. “SOMObject”
Unloading emitih. Loading emitctm. “SOMObject” Unloading emitctm. Loading emitc. “SOMObject”
Unloading emitc.

Heh. Actually, somipc.exe is a real SOM Compiler. Not sc.exe. sc.exe only prepares the input file for
the compiler and handles command line and environment variables.

After some playing we can see, somipc returns 0 if all ok and -1 if error.

So, somipc.exe parses preprocessed IDL file and builds Abstract graph. From Abstract graph Object
Graph are build. After this somipc.exe calls one by one all emit*.dll files according to -e switches.
emit*.dll are set of DLLs with SOM classes.

Drawing here!!

SOM Compiler IDL SOM Preprocessor IDL SOM Compiler Emitter Template

 OIDL SOM Preprocessor OIDL SOM Compiler

Разрисовать по аналогии с со структурой, что в патентах и документации по SOM, но с учетом
наличия OIDL и SOMC.

SOM Compiler sc or somc is a frontend which controls basic workflow. Depending on source file
extension it call or IDL or OIDL pre-processor and, after preprocessing, IDL or OIDL compiler. IDL or
OIDL compiler builds abstract syntax graph using Entry structure. Entry structure contains information

http://www.osfree.org
http://mcpp.sourceforge.net

2026/01/16 04:46 15/101 Quick history

osFree wiki - https://osfree.su/doku/

about entry type, pointer to object wrapper and all information about object specific attributes.

Note! Entry structure is not documented and differs in somFree and IBM SOM versions.

IDL or OIDL calls required emitters with root Entry structure on emitter entry. Emitter requests root
object wrapper and, using or not using template faculty, process all graph using Object Syntax Graph.
Object Syntax Graph generates required Entry objects on demand.

Emitter is a subclass of 'SOMTEmitC' class. Emitter used to produce output file using template file
from object graph of the SOM Interface Definition Language file. Physically emitter represented as DLL
with name EMIT<identificator>.DLL. For C headers emith.dll emitter DLL is used. For C++ headers
emitxh.dll emitter DLL is used. Emitter DLL contains only one entry with ordinal 1 and name 'emit'.

SOMEXTERN FILE * SOMLINK emit(char *file, Entry * cls, Stab * stab);

'emit' function creates emitter object (from emitter class, which based on 'SOMTEmitC') and calls
'somtGenerateSections' method.

Usually an emitter file can be generated using 'newemit.cmd' script (can be found at Hobbes in
SOMObjects toolkit).

newemit -C <className> <file_stem>

To emitter passed Entry object which is root of Object Graph. The root object can be an interface or
module class. Processing of such classes slightly different.

Last part of Emitter Framework is template files. Template files allow you to make some control of
emitting process. Templates are usual text files with extension *.efw. Here you can modify output for
your wish. Not all emitters support templates.

So, now you have some imagination about that Emitter Framework is and how it works.

Template faculty

Emitters uses template faculty to produce output file. Template file has structure divided by sections.
Each section begins from section name ended by colon. Each emitter can use its own section names.
Refer to corresponding emitter and Entry classes description for section names information. Here is
template file example:

:copyrightS
This is example template
:templateS
/* Template output example */
<className>

Core of Template faculty is a Key-Value strings collection represented by SOMStringTableC class. All
substitutable to template values stored in SOMStringTableC class instance. On template file process,
First of all SOMTEmitC method somtSetPredefinedSymbols sets section names symbols. By default it
is following sections:

https://osfree.su/doku/doku.php?id=en:docs:tk:somtemitc
https://osfree.su/doku/doku.php?id=en:docs:tk:the_som_interface_definition_language
https://osfree.su/doku/doku.php?id=en:docs:tk:somtemitc

Last update: 2024/09/18 15:00 en:docs:tk:som https://osfree.su/doku/doku.php?id=en:docs:tk:som&rev=1726671600

https://osfree.su/doku/ Printed on 2026/01/16 04:46

prologSN prologS
baseIncludesPrologSN baseIncludesPrologS
baseIncludesSN baseIncludesS
baseIncludesEpilogSN baseIncludesEpilogS
metaIncludeSN metaIncludeS
classSN classS
metaSN metaS
basePrologSN basePrologS
baseSN baseS
baseEpilogSN baseEpilogS
constantPrologSN constantPrologS
constantSN constantS
constantEpilogSN constantEpilogS
typedefPrologSN typedefPrologS
typedefSN typedefS
typedefEpilogSN typedefEpilogS
structPrologSN structPrologS
structSN structS
structEpilogSN structEpilogS
unionPrologSN unionPrologS
unionSN unionS
unionEpilogSN unionEpilogS
enumPrologSN enumPrologS
enumSN enumS
enumEpilogSN enumEpilogS
attributePrologSN attributePrologS
attributeSN attributeS
attributeEpilogSN attributeEpilogS
interfacePrologSN interfacePrologS
interfaceSN interfaceS
interfaceEpilogSN interfaceEpilogS
modulePrologSN modulePrologS
moduleSN moduleS
moduleEpilogSN moduleEpilogS
passthruPrologSN passthruPrologS
passthruSN passthruS
passthruEpilogSN passthruEpilogS
releaseSN releaseS
dataPrologSN dataPrologS
dataSN dataS
dataEpilogSN dataEpilogS
methodsPrologSN methodsPrologS
methodsSN methodsS
overrideMethodsSN overrideMethodsS
overriddenMethodsSN overriddenMethodsS
inheritedMethodsSN inheritedMethodsS

2026/01/16 04:46 17/101 Quick history

osFree wiki - https://osfree.su/doku/

methodsEpilogSN methodsEpilogS
epilogSN epilogS

Generic Emitter

Generic emitter is a generic template based emitter. It uses simplest template with only one section
“template”. Main goal of Generic Emitter is to produce Generic framework emitter files. It is used by
newemit tool to produce full set of files required to build new emitter. Добавить описание символов
шаблона и описание, какой шаблон за что отвечает.

DEF Emitter

DEF emitter used to generate definition file for DLL creation using MS LINK. somFree version of
emitter uses template file to generate DEF file. Original IBM SOM DEF Emitter uses hard coded
generation. Добавить описание символов шаблона.

LNK Emitter

LNK emitter used to generate linking file for DLL creation using Watcom WLINK. somFree version of
emitter uses template file to generate LNK file. Original IBM SOM DEF Emitter doesn't have such
emitter. Добавить описание символов шаблона.

CSC, PSC, SC Emitters

CSC emitter used to generate OIDL class definition file (CSC) used in IBM SOM 1.0. somFree version of
emitter uses template file to generate CSC file. Original IBM SOM CSC Emitter uses hard coded
generation. Добавить описание символов шаблона.

IDL, PDL Emitters

IDL emitter used to generate IDL class definition file used in IBM SOM 2.0 and higher. somFree version
of emitter uses template file to generate IDL file. Original IBM SOM IDL Emitter uses hard coded
generation. Добавить описание символов шаблона.

Developing new emitter

somFree Emitter Framework provides templates and libraries for developing emitters compatible with
both IBM SOM 2.1 and IBM SOM 3.0 compilers. Because of different ABI (refer Appendix 1 for more
information) somFree emitters automatically configures for corresponding API.

Last update: 2024/09/18 15:00 en:docs:tk:som https://osfree.su/doku/doku.php?id=en:docs:tk:som&rev=1726671600

https://osfree.su/doku/ Printed on 2026/01/16 04:46

CORBA C Language mapping

somFree Compiler support CORBA C Language Mapping Specification 1.0 [1]. CORBA C Language
mapping slightly differ from SOM C Language mapping, used by original IBM SOM 2.1. CORBA C
Language mapping is default for somFree Compiler. This chapter provides short description of
mapping. For full description refer to [1].

SOM C Language mapping

SOM C Language mapping is a IBM SOM mapping variant. For some reason (most probably because
variable arguments support) IBM SOM not exactly implements C Language Mapping Specification.

Programmer's reference

SOM Runtime C library

SOM Runtime C library somwm35i is a subset of C runtime library functions found to be used by IBM
SOM 3.0 for NT emitters. SOM Runtime C library provided only for support of IBM SOM 3.0 for NT
emitters. This is not full featured C library but compatibility layer and must not be used for
development. Functions utilize IBM Optlink calling convention. This library required only under
Windows NT systems.

List of emulated function and variables.

_CRT_init
_CRT_term
_abort_in_progress
_exception_dllinit
_matherr
fclose
_fprintfieee
strlen
_sprintfieee
strcmp
strstr
_ctype
feof
fgetc
fgets
fputs
fread
fseek
fwrite
memmove

2026/01/16 04:46 19/101 Quick history

osFree wiki - https://osfree.su/doku/

memset
remove
rename
rewind
strchr
strcpy
strlen
strncmp
strncpy
strrchr
strtok
tolower
memcpy
strcat
getenv
_printfieee
_sscanfieee
exit
stderr
_putenv
_terminate
_PrintErrMsg
_SysFindFirst
_SysFindNext
_SysFindClose
malloc
free
strdup
strpbrk

somFree Compiler library

somFree Compiler library somc is a set of helper functions for compiler tasks. Used by IBM SOM
emitters. Library provided solely to provide support of IBM emitters. Must not be used to write new
code.

somtfexists, somtfexistsSL function

SOMEXTERN BOOL somtfexists(char *file);
SOMEXTERN BOOL SOMLINK somtfexistsSL(char *file);

Check is file exists in paths.

Note: somtfexists version uses default compiler calling convention. For IBM SOM 3.0 for NT it is
Optlink.

Last update: 2024/09/18 15:00 en:docs:tk:som https://osfree.su/doku/doku.php?id=en:docs:tk:som&rev=1726671600

https://osfree.su/doku/ Printed on 2026/01/16 04:46

somtsearchFile, somtsearchFileSL function

SOMEXTERN char * somtsearchFile(char *file, char *fullpath, char *env);
SOMEXTERN char * SOMLINK somtsearchFileSL(char *file, char *fullpath, char
*env);

Search path using file and env dirs and return full path if exists.

Note: somtsearchFile version uses default compiler calling convention. For IBM SOM 3.0 for NT it is
Optlink.

somttraverseParents, somttraverseParentsSL function

SOMEXTERN int somttraverseParents(FILE *fp, Entry * cls, Entry *arg, int
(*fn)(FILE*,Entry*,Entry*), SMTraverse flg);
SOMEXTERN int SOMLINK somttraverseParentsSL(FILE *fp, Entry * cls, Entry
*arg, int (*fn)(FILE*,Entry*,Entry*), SMTraverse flg);

Note: somttraverseParents version uses default compiler calling convention. For IBM SOM 3.0 for NT it
is Optlink.

somtloadSL function

SOMEXTERN EmitFn SOMLINK somtloadSL(char *fileName, char *functionName,
void **modHandle);

Load emitter <fileName> and return pointer <EmitFn> to emit or emitSL function <functionName>
and return handle <modHandle> of loaded module. This function switches somc to IBM SOM 3.0 ABI if
emitSL function found or to IBM SOM 2.1 ABI if emit function found.

somtfindBaseEp, somtfindBaseEpSL function

SOMEXTERN Entry * somtfindBaseEp(Entry *ep);
SOMEXTERN Entry * SOMLINK somtfindBaseEpSL(Entry *ep);

Note: somtfindBaseEp version uses default compiler calling convention. For IBM SOM 3.0 for NT it is
Optlink.

somtgetType, somtgetTypeSL function

SOMEXTERN Entry * somtgetType(char *name, SOMTTypes type);
SOMEXTERN Entry * SOMLINK somtgetTypeSL(char *name, SOMTTypes type);

Note: somtGetType version uses default compiler calling convention. For IBM SOM 3.0 for NT it is
Optlink.

2026/01/16 04:46 21/101 Quick history

osFree wiki - https://osfree.su/doku/

somtokfopen, somtokfopenSL function

SOMEXTERN FILE * somtokfopen(char *path, char *mode);
SOMEXTERN FILE * SOMLINK somtokfopenSL(char *path, char *mode);

Same as C fopen function.

Note: somtokfopen version uses default compiler calling convention. For IBM SOM 3.0 for NT it is
Optlink.

somtokrename, somtokrenameSL function

SOMEXTERN int somtokrename(const char*, const char *);
SOMEXTERN int SOMLINK somtokrenameSL(const char*, const char *);

Note: somtokrename version uses default compiler calling convention. For IBM SOM 3.0 for NT it is
Optlink.

somtopenEmitFile, somtopenEmitFileSL function

SOMEXTERN FILE * somtopenEmitFile(char *file, char *ext);
SOMEXTERN FILE * SOMLINK somtopenEmitFileSL(char *file, char *ext);

Note: somtopenEmitFile version uses default compiler calling convention. For IBM SOM 3.0 for NT it is
Optlink.

somtisDbcs, somtisDbcsSL function

SOMEXTERN BOOL somtisDbcs(int c);
SOMEXTERN BOOL SOMLINK somtisDbcsSL(int c);

Note: somtisDbcs version uses default compiler calling convention. For IBM SOM 3.0 for NT it is
Optlink.

somtremoveExt, somtremoveExtSL function

SOMEXTERN boolean somtremoveExt(char *name, char *ext, char *buf);
SOMEXTERN boolean SOMLINK somtremoveExt(char *name, char *ext, char *buf);

Remove extension from<name> and return to <buf>

Note: somtremoveExt version uses default compiler calling convention. For IBM SOM 3.0 for NT it is
Optlink.

Last update: 2024/09/18 15:00 en:docs:tk:som https://osfree.su/doku/doku.php?id=en:docs:tk:som&rev=1726671600

https://osfree.su/doku/ Printed on 2026/01/16 04:46

somtaddExt, somtaddExtSL function

SOMEXTERN char * somtaddExt(char *name, char *ext, char *buf);
SOMEXTERN char * SOMLINK somtaddExtSL(char *name, char *ext, char *buf);

Add <ext> extension to <name> filestem and return result in <buf>

Note: somtaddExt version uses default compiler calling convention. For IBM SOM 3.0 for NT it is
Optlink.

somtarrayToPtr, somtarrayToPtrSL function

SOMEXTERN char * somtarrayToPtr(Entry *ep, char *stars, char *buf);
SOMEXTERN char * SOMLINK somtarrayToPtrSL(Entry *ep, char *stars, char
*buf);

Note: somtarrayToPtr version uses default compiler calling convention. For IBM SOM 3.0 for NT it is
Optlink.

somtattNormalise, somtattNormaliseSL function

SOMEXTERN char * somtattNormalise(char *name, char *buf);
SOMEXTERN char * SOMLINK somtattNormaliseSL(char *name, char *buf);

Note: somtattNormalise version uses default compiler calling convention. For IBM SOM 3.0 for NT it is
Optlink.

somtbasename, somtbasenameSL function

SOMEXTERN char * somtbasenameSL(char *path);
SOMEXTERN char * SOMLINK somtbasenameSL(char *path);

Return filename without path.

Note: somtbasename version uses default compiler calling convention. For IBM SOM 3.0 for NT it is
Optlink.

somtctos, somtctosSL function

SOMEXTERN char * somtctos(Const *con, char *buf);
SOMEXTERN char * SOMLINK somtctosSL(Const *con, char *buf);

Note: somtctos version uses default compiler calling convention. For IBM SOM 3.0 for NT it is Optlink.

2026/01/16 04:46 23/101 Quick history

osFree wiki - https://osfree.su/doku/

somtdbcsPostincr, somtdbcsPostincrSL function

SOMEXTERN char * somtdbcsPostincr(char **p);
SOMEXTERN char * SOMLINK somtdbcsPostincrSL(char **p);

Note: somtdbcsPostincr version uses default compiler calling convention. For IBM SOM 3.0 for NT it is
Optlink.

somtdbcsPreincr, somtdbcsPreincrSL function

SOMEXTERN char * somtdbcsPreincr(char **p);
SOMEXTERN char * SOMLINK somtdbcsPreincrSL(char **p);

Note: somtdbcsPreincr version uses default compiler calling convention. For IBM SOM 3.0 for NT it is
Optlink.

somtdbcsStrchr, somtdbcsStrchrSL function

SOMEXTERN char * somtdbcsStrchr(char *s, int c);
SOMEXTERN char * SOMLINK somtdbcsStrchrSL(char *s, int c);

Note: somtdbcsStrchr version uses default compiler calling convention. For IBM SOM 3.0 for NT it is
Optlink.

somtdbcsStrrchr, somtdbcsStrrchrsL function

SOMEXTERN char * somtdbcsStrrchr(char *s, int c);
SOMEXTERN char * SOMLINK somtdbcsStrrchrSL(char *s, int c);

Note: somtdbcsStrrchr version uses default compiler calling convention. For IBM SOM 3.0 for NT it is
Optlink.

somtdbcsStrstr, somtdbcsStrstrSL function

SOMEXTERN char * somtdbcsStrstr(char *s1, char *s2);
SOMEXTERN char * SOMLINK somtdbcsStrstrSL(char *s1, char *s2);

Note: somtdbcsStrstr version uses default compiler calling convention. For IBM SOM 3.0 for NT it is
Optlink.

somteptotype, somteptotypeSL function

SOMEXTERN char * somteptotype(Entry *ep, char *ptrs, char *buf);

Last update: 2024/09/18 15:00 en:docs:tk:som https://osfree.su/doku/doku.php?id=en:docs:tk:som&rev=1726671600

https://osfree.su/doku/ Printed on 2026/01/16 04:46

SOMEXTERN char * SOMLINK somteptotypeSL(Entry *ep, char *ptrs, char *buf);

Note: somteptotype version uses default compiler calling convention. For IBM SOM 3.0 for NT it is
Optlink.

somtgetDesc, somtgetDescSL function

SOMEXTERN char * somtgetDesc(Stab *stab, Entry *cls, Entry *method, char
*desc, BOOL addQuotes, BOOL use, BOOL versflg);
SOMEXTERN char * SOMLINK somtgetDescSL(Stab *stab, Entry *cls, Entry
*method, char *desc, BOOL addQuotes, BOOL use, BOOL versflg);

Note: somtgetDesc version uses default compiler calling convention. For IBM SOM 3.0 for NT it is
Optlink.

somtgetVersion, somtgetVersionSL function

SOMEXTERN char * somtgetVersion(char *sccsid, char *version);
SOMEXTERN char * SOMLINK somtgetVersionSL(char *sccsid, char *version);

Note: somtgetVersion version uses default compiler calling convention. For IBM SOM 3.0 for NT it is
Optlink.

somtgetgatt, somtgetgattSL function

SOMEXTERN char * somtgetgatt(char *s);
SOMEXTERN char * SOMLINK somtgetgattSL(char *s);

Note: somtgetgatt version uses default compiler calling convention. For IBM SOM 3.0 for NT it is
Optlink.

somtnextword, somtnextwordSL function

SOMEXTERN char * somtnextword(const char *s, char *buf);
SOMEXTERN char * SOMLINK somtnextwordSL(const char *s, char *buf);

Note: somtnextword version uses default compiler calling convention. For IBM SOM 3.0 for NT it is
Optlink.

somtnormaliseDesc, somtnormaliseDescSL function

SOMEXTERN char * somtnormaliseDesc(char *desc, char *normal);
SOMEXTERN char * SOMLINK somtnormaliseDescSL(char *desc, char *normal);

2026/01/16 04:46 25/101 Quick history

osFree wiki - https://osfree.su/doku/

Note: somtnormaliseDesc version uses default compiler calling convention. For IBM SOM 3.0 for NT it
is Optlink.

somtsatos, somtsatosSL function

SOMEXTERN char * somtsatos(char **sa, char *sep, char *buf);
SOMEXTERN char * SOMLINK somtsatosSL(char **sa, char *sep, char *buf);

Note: somtsatos version uses default compiler calling convention. For IBM SOM 3.0 for NT it is Optlink.

somtsearchFile, somtsearchFileSL function

SOMEXTERN char * somtsearchFile(char *file, char *path, char *envvar);
SOMEXTERN char * SOMLINK somtsearchFileSL(char *file, char *path, char
*envvar);

Note: somtsearchFile version uses default compiler calling convention. For IBM SOM 3.0 for NT it is
Optlink.

somtskipws, somtskipwsSL function

SOMEXTERN char * somtskipws(const char *s);
SOMEXTERN char * SOMLINK somtskipwsSL(const char *s);

Note: somtskipws version uses default compiler calling convention. For IBM SOM 3.0 for NT it is
Optlink.

somtstringFmt, somtstringFmtSL function

SOMEXTERN char * somtstringFmtSL(char *fmt, ...)
SOMEXTERN char * SOMLINK somtstringFmtSL(char *fmt, ...)

Allocate buffer for string, format it using <fmt> and return pointer to buffer.

Note: somtstringFmt version uses default compiler calling convention. For IBM SOM 3.0 for NT it is
Optlink.

somttype, somttypeSL function

SOMEXTERN char * somttype(SOMTType type);
SOMEXTERN char * SOMLINK somttypeSL(SOMTType type);

Return string representation of type of Entry structure except special case SOMTEmitterBeginE and
SOMTEmitterEndE types.

Last update: 2024/09/18 15:00 en:docs:tk:som https://osfree.su/doku/doku.php?id=en:docs:tk:som&rev=1726671600

https://osfree.su/doku/ Printed on 2026/01/16 04:46

Note: somttype version uses default compiler calling convention. For IBM SOM 3.0 for NT it is Optlink.

Warning: Depricated. Use somtEntryTypeName instead.

somtuniqFmt, somtuniqFmtSL function

SOMEXTERN char * somtuniqFmt(MemBuf *membuf, char *fmt, ...)
SOMEXTERN char * SOMLINK somtuniqFmtSL(MemBuf *membuf, char *fmt, ...)

Return unique formatted string.

Note: somtuniqFmt version uses default compiler calling convention. For IBM SOM 3.0 for NT it is
Optlink.

somtargFlag, somtargFlagSL function

SOMEXTERN int somtargFlag(int *argc, char ***argv);
SOMEXTERN int SOMLINK somtargFlagSL(int *argc, char ***argv);

Note: somtargFlag version uses default compiler calling convention. For IBM SOM 3.0 for NT it is
Optlink.

somtattjoin, somtattjoinSL function

SOMEXTERN int somtattjoin(register AttList *ap1, AttList *ap2);
SOMEXTERN int SOMLINK somtattjoinSL(register AttList *ap1, AttList *ap2);

Note: somtattjoin version uses default compiler calling convention. For IBM SOM 3.0 for NT it is
Optlink.

somtdbcsLastChar, somtdbcsLastCharSL function

SOMEXTERN int somtdbcsLastChar(char *buf);
SOMEXTERN int SOMLINK somtdbcsLastCharSL(char *buf);

Note: somtdbcsLastChar version uses default compiler calling convention. For IBM SOM 3.0 for NT it is
Optlink.

somtdbcsScan, somtdbcsScanSL function

SOMEXTERN int somtdbcsScan(char **buf);
SOMEXTERN int SOMLINK somtdbcsScanSL(char **buf);

Note: somtdbcsScan version uses default compiler calling convention. For IBM SOM 3.0 for NT it is

2026/01/16 04:46 27/101 Quick history

osFree wiki - https://osfree.su/doku/

Optlink.

somtdiskFull, somtdiskFullSL function

SOMEXTERN int somtdiskFull(FILE *fp);
SOMEXTERN int SOMLINK somtdiskFullSL(FILE *fp);

Note: somtdiskFull version uses default compiler calling convention. For IBM SOM 3.0 for NT it is
Optlink.

somtfclose, somtfcloseSL function

SOMEXTERN int somtfclose(FILE *fp);
SOMEXTERN int SOMLINK somtfcloseSL(FILE *fp);

Same as C fclose function.

Note: somtfclose version uses default compiler calling convention. For IBM SOM 3.0 for NT it is
Optlink.

somtisparent, somtisparentSL function

SOMEXTERN int somtisparent(Entry *cls, Entry *parent);
SOMEXTERN int SOMLINK somtisparentSL(Entry *cls, Entry *parent);

Note: somtisparent version uses default compiler calling convention. For IBM SOM 3.0 for NT it is
Optlink.

somtmget, somtmgetSL function

SOMEXTERN int somtmget(int setnum, int msgnum, char *msgbuf);
SOMEXTERN int SOMLINK somtmgetSL(int setnum, int msgnum, char *msgbuf);

Note: somtmget version uses default compiler calling convention. For IBM SOM 3.0 for NT it is Optlink.

somtmopen, somtmopenSL function

SOMEXTERN int somtmopen(char *filename);
SOMEXTERN int SOMLINK somtmopenSL(char *filename);

Note: somtmopen version uses default compiler calling convention. For IBM SOM 3.0 for NT it is
Optlink.

Last update: 2024/09/18 15:00 en:docs:tk:som https://osfree.su/doku/doku.php?id=en:docs:tk:som&rev=1726671600

https://osfree.su/doku/ Printed on 2026/01/16 04:46

somtmprintf, somtmprintfSL function

SOMEXTERN int somtmprintf(int setnum, int msgnum, ...);
SOMEXTERN int SOMLINK somtmprintfSL(int setnum, int msgnum, ...);

Note: somtmprintf version uses default compiler calling convention. For IBM SOM 3.0 for NT it is
Optlink.

somtokremove, somtokremoveSL function

SOMEXTERN int somtokremove(char *file);
SOMEXTERN int SOMLINK somtokremoveSL(char *file);

Alias of C remove function.

Note: somtokremove version uses default compiler calling convention. For IBM SOM 3.0 for NT it is
Optlink.

somtunload, somtunloadSL function

SOMEXTERN int somtunload(void *modHandle);
SOMEXTERN int SOMLINK somtunloadSL(void *modHandle);

Note: somtunload version uses default compiler calling convention. For IBM SOM 3.0 for NT it is
Optlink.

somtwriteaccess, somtwriteaccessSL function

SOMEXTERN int somtwriteaccess(char *file);
SOMEXTERN int SOMLINK somtwriteaccessSL(char *file);

Note: somtwriteaccess version uses default compiler calling convention. For IBM SOM 3.0 for NT it is
Optlink.

somtsmalloc, somtsmallocSL function

SOMEXTERN void * somtsmalloc(size_t nbytes, BYTE clear);
SOMEXTERN void * SOMLINK somtsmallocSL(size_t nbytes, BYTE clear);

Allocate <nbytes> of memory and fill it by zeroes if <clear> flag is set.

Note: somtsmalloc version uses default compiler calling convention. For IBM SOM 3.0 for NT it is
Optlink.

2026/01/16 04:46 29/101 Quick history

osFree wiki - https://osfree.su/doku/

somtaddGAtt, somtaddGAttSL function

SOMEXTERN void somtaddGAtt(MemBuf **membuf, AttList **ap, char *buf);
SOMEXTERN void SOMLINK somtaddGAttSL(MemBuf **membuf, AttList **ap, char
*buf);

Note: somtaddGAtt version uses default compiler calling convention. For IBM SOM 3.0 for NT it is
Optlink.

somtcalcFileName, somtcalcFileNameSL function

SOMEXTERN void somtcalcFileName(char *def, char *over, char *ext);
SOMEXTERN void SOMLINK somtcalcFileNameSL(char *def, char *over, char *ext);

Note: somtcalcFileName version uses default compiler calling convention. For IBM SOM 3.0 for NT it is
Optlink.

somtcleanFilesFatal, somtcleanFilesFatalSL function

SOMEXTERN void somtcleanFilesFatal(int status);
SOMEXTERN void SOMLINK somtcleanFilesFatalSL(int status);

Delete temporary files (if emitted file opened) and exit.

Note: somtcleanFilesFatal version uses default compiler calling convention. For IBM SOM 3.0 for NT it
is Optlink.

somtemitTypes, somtemitTypesSL function

SOMEXTERN void somtemitTypes(FILE *fp, Mlist *mp, Stab *stab);
SOMEXTERN void SOMLINK somtemitTypesSL(FILE *fp, Mlist *mp, Stab *stab);

Note: somtemitTypes version uses default compiler calling convention. For IBM SOM 3.0 for NT it is
Optlink.

somterror, somterrorSL function

SOMEXTERN void somterror(char *file, long lineno, char *fmt, ...);
SOMEXTERN void SOMLINK somterrorSL(char *file, long lineno, char *fmt, ...);

Note: somterror version uses default compiler calling convention. For IBM SOM 3.0 for NT it is Optlink.

Last update: 2024/09/18 15:00 en:docs:tk:som https://osfree.su/doku/doku.php?id=en:docs:tk:som&rev=1726671600

https://osfree.su/doku/ Printed on 2026/01/16 04:46

somtfatal, somtfatalSL function

SOMEXTERN void somtfatal(char *file, long lineno, char *fmt, ...);
SOMEXTERN void SOMLINK somtfatalSL(char *file, long lineno, char *fmt, ...);

Note: somtfatal version uses default compiler calling convention. For IBM SOM 3.0 for NT it is Optlink.

somtinternal, somtinternalSL function

SOMEXTERN void somtinternal(char *file, long lineno, char *fmt, ...);
SOMEXTERN void SOMLINK somtinternalSL(char *file, long lineno, char *fmt,
...);

Note: somtinternal version uses default compiler calling convention. For IBM SOM 3.0 for NT it is
Optlink.

somtmclose, somtmcloseSL function

SOMEXTERN void somtmclose(void);
SOMEXTERN void SOMLINK somtmcloseSL(void);

Note: somtmclose version uses default compiler calling convention. For IBM SOM 3.0 for NT it is
Optlink.

somtmsg, somtmsgSL function

SOMEXTERN void somtmsg(char *file, long lineno, char *fmt, ...);
SOMEXTERN void SOMLINK somtmsgSL(char *file, long lineno, char *fmt, ...);

Note: somtmsg version uses default compiler calling convention. For IBM SOM 3.0 for NT it is Optlink.

somtreadDescFile, somtreadDescFileSL function

SOMEXTERN void somtreadDescFile(Stab *stab, char *file);
SOMEXTERN void SOMLINK somtreadDescFileSL(Stab *stab, char *file);

Note: somtreadDescFile version uses default compiler calling convention. For IBM SOM 3.0 for NT it is
Optlink.

somtsetDefaultDesc, somtsetDefaultDescSL function

SOMEXTERN void somtsetDefaultDesc(Stab *stab);

2026/01/16 04:46 31/101 Quick history

osFree wiki - https://osfree.su/doku/

SOMEXTERN void SOMLINK somtsetDefaultDescSL(Stab *stab);

Note: somtsetDefaultDesc version uses default compiler calling convention. For IBM SOM 3.0 for NT it
is Optlink.

somtsetEmitSignals, somtsetEmitSignalsSL function

SOMEXTERN void somtsetEmitSignals(void(*cleanup) (int), void (*internal)
(int));
SOMEXTERN void SOMLINK somtsetEmitSignalsSL(void(*cleanup) (int), void
(*internal) (int));

Note: somtsetEmitSignals version uses default compiler calling convention. For IBM SOM 3.0 for NT it
is Optlink.

somtsetTypeDefn, somtsetTypeDefnSL function

SOMEXTERN void somtsetTypeDefn(Entry *type, Entry *ep, char *ptrs, Entry
*ret, BOOL array);
SOMEXTERN void SOMLINK somtsetTypeDefnSL(Entry *type, Entry *ep, char *ptrs,
Entry *ret, BOOL array);

Note: somtsetTypeDefn version uses default compiler calling convention. For IBM SOM 3.0 for NT it is
Optlink.

somtshowVersion, somtshowVersionSL function

SOMEXTERN void somtshowVersion(char *s, char *progname, char *sccsid);
SOMEXTERN void SOMLINK somtshowVersionSL(char *s, char *progname, char
*sccsid);

Note: somtshowVersion version uses default compiler calling convention. For IBM SOM 3.0 for NT it is
Optlink.

somtsmfree, somtsmfreeSL function

SOMEXTERN void somtsmfree(void *first, ...);
SOMEXTERN void SOMLINK somtsmfreeSL(void *first, ...);

Note: somtsmfree version uses default compiler calling convention. For IBM SOM 3.0 for NT it is
Optlink.

somtunsetEmitSignals, somtunsetEmitSignalsSL function

Last update: 2024/09/18 15:00 en:docs:tk:som https://osfree.su/doku/doku.php?id=en:docs:tk:som&rev=1726671600

https://osfree.su/doku/ Printed on 2026/01/16 04:46

SOMEXTERN void somtunsetEmitSignals(void);
SOMEXTERN void SOMLINK somtunsetEmitSignalsSL(void);

Note: somtunsetEmitSignals version uses default compiler calling convention. For IBM SOM 3.0 for NT
it is Optlink.

somtwarn, somtwarnSL function

SOMEXTERN void somtwarn(char *file, long lineno, char *fmt, ...);
SOMEXTERN void SOMLINK somtwarnSL(char *file, long lineno, char *fmt, ...);

Note: somtwarn version uses default compiler calling convention. For IBM SOM 3.0 for NT it is Optlink.

somtuppercase, somtuppercaseSL function

SOMEXTERN char * somtuppercase(char *s, char *buf);
SOMEXTERN char * SOMLINK somtuppercaseSL(char *s, char *buf);

Convert <s> to upper case and return to <buf>.

Note: somtuppercase version uses default compiler calling convention. For IBM SOM 3.0 for NT it is
Optlink.

somtlowercase, somtlowercaseSL function

SOMEXTERN char * somtlowercase(char *s, char *buf);
SOMEXTERN char * SOMLINK somtlowercase(char *s, char *buf)

Convert <s> to lower case and return to <buf>.

Note: somtlowercase version uses default compiler calling convention. For IBM SOM 3.0 for NT it is
Optlink.

somtdbcsuppercase, somtdbcsuppercaseSL function

SOMEXTERN char * somtdbcsuppercase(char *s, char *buf);
SOMEXTERN char * SOMLINK somtdbcsuppercaseSL(char *s, char *buf);

Note: somtdbcsuppercase version uses default compiler calling convention. For IBM SOM 3.0 for NT it
is Optlink.

somtdbcslowercase, somtdbcslowercaseSL function

SOMEXTERN char * somtdbcslowercase(char *s, char *buf);

2026/01/16 04:46 33/101 Quick history

osFree wiki - https://osfree.su/doku/

SOMEXTERN char * SOMLINK somtdbcslowercaseSL(char *s, char *buf);

Note: somtdbcslowercase version uses default compiler calling convention. For IBM SOM 3.0 for NT it
is Optlink.

somtresetEmitSignals, somtresetEmitSignalsSL function

SOMEXTERN void somtresetEmitSignals(void);
SOMEXTERN void SOMLINK somtresetEmitSignalsSL(void);

Note: somtresetEmitSignals version uses default compiler calling convention. For IBM SOM 3.0 for NT
it is Optlink.

somtsizeofEntry, somtsizeofEntrySL function

SOMEXTERN size_t somtsizeofEntry(SOMTTypes type);
SOMEXTERN size_t SOMLINK somtsizeofEntrySL(SOMTTypes type);

Return size of Entry structure for <type> of entry;

Note: somtsizeofEntry version uses default compiler calling convention. For IBM SOM 3.0 for NT it is
Optlink.

Mapping of type to Entry.u type and nameis following:

Entry type union struct union name
SOMTClassE Class c
SOMTMetaE Meta mt
SOMTBaseE Parent p
SOMTPassthruE Passthru pt
SOMTNewMethodE Method_OR_Data m
SOMTOverrideMethodE Method_OR_Data m
SOMTOverriddenMethodE Method_OR_Data m
SOMTDataE Method_OR_Data m
SOMTArgumentE Method_OR_Data m
SOMTTypedefBE Method_OR_Data m
SOMTVoidPtrBE Method_OR_Data m
SOMTStructE Struct struc
SOMTTyDclE Typedef ty
SOMTTypedefE Typedef ty
SOMTUnionE Union un
SOMTUnionSE Union un
SOMTEnumE Enumerator enumerator
SOMTConstE Const con
SOMTAttE Att att
SOMTSequenceE Sequence seq

Last update: 2024/09/18 15:00 en:docs:tk:som https://osfree.su/doku/doku.php?id=en:docs:tk:som&rev=1726671600

https://osfree.su/doku/ Printed on 2026/01/16 04:46

Entry type union struct union name
SOMTSequenceTDE Sequence seq
SOMTStringE String str
SOMTEnumBE EnumName enumN
SOMTModuleE Module mod

somtepname, somtepnameSL function

SOMEXTERN char * somtepname(Entry *ep, char *buf, BOOL suppressImpctxCheck);
SOMEXTERN char * SOMLINK somtepnameSL(Entry *ep, char *buf, BOOL
suppressImpctxCheck);

Note: somtepname version uses default compiler calling convention. For IBM SOM 3.0 for NT it is
Optlink.

somtgenSeqName, somtgenSeqNameSL function

SOMEXTERN char * somtgenSeqName(long n, Entry *base, char *buf, BOOL
fullname);
SOMEXTERN char * SOMLINK somtgenSeqNameSL(long n, Entry *base, char *buf,
BOOL fullname);

Note: somtgenSeqName version uses default compiler calling convention. For IBM SOM 3.0 for NT it is
Optlink.

somtmrifatal, somtmrifatalSL function

SOMEXTERN void somtmrifatal(char *file, long lineno, int msgnum,...);
SOMEXTERN void SOMLINK somtmrifatalSL(char *file, long lineno, int
msgnum,...);

Note: somtmrifatal version uses default compiler calling convention. For IBM SOM 3.0 for NT it is
Optlink.

somtmriinternal, somtmriinternalSL function

SOMEXTERN void somtmriinternal(char *file, long lineno, int msgnum,...);
SOMEXTERN void SOMLINK somtmriinternalSL(char *file, long lineno, int
msgnum,...);

Note: somtmriinternal version uses default compiler calling convention. For IBM SOM 3.0 for NT it is
Optlink.

2026/01/16 04:46 35/101 Quick history

osFree wiki - https://osfree.su/doku/

somtmrierror, somtmrierrorSL function

SOMEXTERN void somtmrierror(char *file, long lineno, int msgnum,...);
SOMEXTERN void SOMLINK somtmrierrorSL(char *file, long lineno, int
msgnum,...);

Note: somtmrierror version uses default compiler calling convention. For IBM SOM 3.0 for NT it is
Optlink.

somtmrimsg, somtmrimsgSL function

SOMEXTERN void somtmrimsg(char *file, long lineno, int msgnum,...);
SOMEXTERN void SOMLINK somtmrimsgSL(char *file, long lineno, int
msgnum,...);

Note: somtmrimsg version uses default compiler calling convention. For IBM SOM 3.0 for NT it is
Optlink.

somtmriwarn, somtmriwarnSL function

SOMEXTERN void somtmriwarn(char *file, long lineno, int msgnum,...);
SOMEXTERN void SOMLINK somtmriwarnSL(char *file, long lineno, int
msgnum,...);

Note: somtmriwarn version uses default compiler calling convention. For IBM SOM 3.0 for NT it is
Optlink.

somtsetInternalMessages, somtsetInternalMessagesSL function

SOMEXTERN void somtsetInternalMessages(char *too_long, char *cant_continue,
char *segv, char *bus);
SOMEXTERN void SOMLINK somtsetInternalMessagesSL(char *too_long, char
*cant_continue, char *segv, char *bus);

Note: somtsetInternalMessages version uses default compiler calling convention. For IBM SOM 3.0 for
NT it is Optlink.

somtisvoid, somtisvoidSL function

SOMEXTERN boolean somtisvoidSL(Entry *type, char *defn)
SOMEXTERN BOOL SOMLINK somtisvoidSL(Entry *type, char *defn)

Return TRUE if type->type is SOMTVoidBE it defn equal to “void”, “VOID”, “PMVOID”.

Note: somtisvoid version uses default compiler calling convention. For IBM SOM 3.0 for NT it is

Last update: 2024/09/18 15:00 en:docs:tk:som https://osfree.su/doku/doku.php?id=en:docs:tk:som&rev=1726671600

https://osfree.su/doku/ Printed on 2026/01/16 04:46

Optlink.

somtreturnsStruct, somtreturnsStructSL function

SOMEXTERN BOOL somtreturnsStruct(Entry *ep);
SOMEXTERN BOOL SOMLINK somtreturnsStructSL(Entry *ep);

Note: somtreturnsStruct version uses default compiler calling convention. For IBM SOM 3.0 for NT it is
Optlink.

somtreturnsPtr, somtreturnsPtrSL function

SOMEXTERN BOOL somtreturnsPtr(Entry *ep);
SOMEXTERN BOOL SOMLINK somtreturnsPtrSL(Entry *ep);

Note: somtreturnsPtr version uses default compiler calling convention. For IBM SOM 3.0 for NT it is
Optlink.

somtsimpleName, somtsimpleNameSL function

SOMEXTERN char * somtsimpleName(Entry *ep);
SOMEXTERN char * SOMLINK somtsimpleNameSL(Entry *ep);

Note: somtsimpleName version uses default compiler calling convention. For IBM SOM 3.0 for NT it is
Optlink.

somtqualifyNames, somtqualifyNamesSL function

SOMEXTERN void somtqualifyNames(Stab * stab, BOOL fully);
SOMEXTERN void SOMLINK somtqualifyNamesSL(Stab * stab, BOOL fully);

Note: somtqualifyNames version uses default compiler calling convention. For IBM SOM 3.0 for NT it is
Optlink.

somtfindBaseEpNonPtr, somtfindBaseEpNonPtrSL function

SOMEXTERN Entry * somtfindBaseEpNonPtr(Entry *ep);
SOMEXTERN Entry * SOMLINK somtfindBaseEpNonPtrSL(Entry *ep);

Note: somtfindBaseEpNonPtr version uses default compiler calling convention. For IBM SOM 3.0 for NT
it is Optlink.

2026/01/16 04:46 37/101 Quick history

osFree wiki - https://osfree.su/doku/

somtprocessTraps, somtprocessTrapsSL function

SOMEXTERN BOOL somtprocessTraps(void);
SOMEXTERN BOOL SOMLINK somtprocessTrapsSL(void);

Note: somtprocessTraps version uses default compiler calling convention. For IBM SOM 3.0 for NT it is
Optlink.

somtallocMlist, somtallocMlistSL function

SOMEXTERN Mlist * somtallocMlist(Entry * ep);
SOMEXTERN Mlist * SOMLINK somtallocMlistSL(Entry * ep);

Note: somtallocMlist version uses default compiler calling convention. For IBM SOM 3.0 for NT it is
Optlink.

somtmlistend, somtmlistendSL function

SOMEXTERN Mlist * somtmlistend(Mlist * mp, char *name);
SOMEXTERN Mlist * SOMLINK somtmlistendSL(Mlist * mp, char *name);

Note: somtmlistend version uses default compiler calling convention. For IBM SOM 3.0 for NT it is
Optlink.

somtisMutRef, somtisMutRefSL function

SOMEXTERN BOOL somtisMutRef(Entry *ep, Mlist *seen, BOOL isself, long
level);
SOMEXTERN BOOL SOMLINK somtisMutRefSL(Entry *ep, Mlist *seen, BOOL isself,
long level);

Note: somtisMutRef version uses default compiler calling convention. For IBM SOM 3.0 for NT it is
Optlink.

somtfreeMlist, somtfreeMlistSL function

SOMEXTERN Mlist * somtfreeMlist(Mlist *mp);
SOMEXTERN Mlist * SOMLINK somtfreeMlistSL(Mlist *mp);

Note: somtfreeMlist version uses default compiler calling convention. For IBM SOM 3.0 for NT it is
Optlink.

Last update: 2024/09/18 15:00 en:docs:tk:som https://osfree.su/doku/doku.php?id=en:docs:tk:som&rev=1726671600

https://osfree.su/doku/ Printed on 2026/01/16 04:46

somtdupMlist, somtdupMlistSL function

SOMEXTERN Mlist * somtdupMlist(Mlist *mp, Entry *ep);
SOMEXTERN Mlist * SOMLINK somtdupMlistSL(Mlist *mp, Entry *ep);

Note: somtdupMlist version uses default compiler calling convention. For IBM SOM 3.0 for NT it is
Optlink.

somtfreeWorld, somtfreeWorldSL function

SOMEXTERN void somtfreeWorld();
SOMEXTERN void SOMLINK somtfreeWorldSL();

somtinitMalloc, somtinitMallocSL function

SOMEXTERN void somtinitMalloc(BOOL dynamic)
SOMEXTERN void SOMLINK somtinitMallocSL(BOOL dynamic)

Initialize memory allocation/free functions.

Note: <dynamic> flag ignored in somFree version.

Note: somtinitMalloc version uses default compiler calling convention. For IBM SOM 3.0 for NT it is
Optlink.

somtInitialiseEmitlib. somtInitialiseEmitlibSL function

SOMEXTERN void somtInitialiseEmitlib(void);
SOMEXTERN void SOMLINK somtInitialiseEmitlibSL(void);

Note: somtInitialiseEmitlib version uses default compiler calling convention. For IBM SOM 3.0 for NT it
is Optlink.

somtInitialiseSmmeta, somtInitialiseSmmetaSL function

SOMEXTERN void somtInitialiseSmmeta(void);
SOMEXTERN void SOMLINK somtInitialiseSmmetaSL(void);

Note: somtInitialiseSmmeta version uses default compiler calling convention. For IBM SOM 3.0 for NT
it is Optlink.

somtInitialiseCreatetc, somtInitialiseCreatetcSL function

SOMEXTERN void somtInitialiseCreatetc(void);

2026/01/16 04:46 39/101 Quick history

osFree wiki - https://osfree.su/doku/

SOMEXTERN void SOMLINK somtInitialiseCreatetcSL(void);

Note: somtInitialiseCreatetc version uses default compiler calling convention. For IBM SOM 3.0 for NT
it is Optlink.

somtInitialiseSmtypes, somtInitialiseSmtypesSL function

SOMEXTERN void somtInitialiseSmtypes(void);
SOMEXTERN void SOMLINK somtInitialiseSmtypesSL(void);

Note: somtInitialiseSmtypes version uses default compiler calling convention. For IBM SOM 3.0 for NT
it is Optlink.

somtInitialiseSomc, somtInitialiseSomcSL function

SOMEXTERN void somtInitialiseSomc(void);
SOMEXTERN void SOMLINK somtInitialiseSomcSL(void);

Note: somtInitialiseSomc version uses default compiler calling convention. For IBM SOM 3.0 for NT it is
Optlink.

somtInitialiseSmsmall, somtInitialiseSmsmallSL function

SOMEXTERN void somtInitialiseSmsmall(void);
SOMEXTERN void SOMLINK somtInitialiseSmsmallSL(void);

Note: somtInitialiseSmsmall version uses default compiler calling convention. For IBM SOM 3.0 for NT
it is Optlink.

somtattMap, somtattMapSL function

somtexit, somtexitSL function

SOMEXTERN void somtexit(SOMTExitBuf *ebuf, int status);
SOMEXTERN void SOMLINK somtexitSL(SOMTExitBuf *ebuf, int status);

Note: somtexit version uses default compiler calling convention. For IBM SOM 3.0 for NT it is Optlink.

somtdymain, somtdymainSL function

SOMEXTERN void somtdymain(char *file, Entry *cls, EmitFn emitfn, char
*emitter, int first, char *version, Stab *stab);
SOMEXTERN void SOMLINK somtdymainSL(char *file, Entry *cls, EmitFn emitfn,

Last update: 2024/09/18 15:00 en:docs:tk:som https://osfree.su/doku/doku.php?id=en:docs:tk:som&rev=1726671600

https://osfree.su/doku/ Printed on 2026/01/16 04:46

char *emitter, int first, char *version, Stab *stab);

Note: somtdymain version uses default compiler calling convention. For IBM SOM 3.0 for NT it is
Optlink.

somtaddHeader, somtaddHeaderSL function

SOMEXTERN void somtaddHeader(char *file, FILE *fp, char *ext);
SOMEXTERN void SOMLINK somtaddHeaderSL(char *file, FILE *fp, char *ext);

Note: somtaddHeader version uses default compiler calling convention. For IBM SOM 3.0 for NT it is
Optlink.

somtnthArg, somtnthArgSL function

SOMEXTERN Entry * somtnthArg(Entry * method, int n);
SOMEXTERN Entry * SOMLINK somtnthArgSL(Entry * method, int n);

Note: somtnthArg version uses default compiler calling convention. For IBM SOM 3.0 for NT it is
Optlink.

somtemitModule, somtemitModuleSL function

SOMEXTERN FILE * somtemitModule(char *file, Entry *cls, char *ext);
SOMEXTERN FILE * SOMLINK somtemitModuleSL(char *file, Entry *cls, char
*ext);

Same as somtopenEmitFile.

Note: somtemitModule version uses default compiler calling convention. For IBM SOM 3.0 for NT it is
Optlink.

somtallocDataList, somtallocDataListSL function

SOMEXTERN Mlist * somtallocDataList(Entry *cls);
SOMEXTERN Mlist * SOMLINK somtallocDataListSL(Entry *cls);

Note: somtallocDataList version uses default compiler calling convention. For IBM SOM 3.0 for NT it is
Optlink.

somtallocMethodList, somtallocMethodListSL function

SOMEXTERN Mlist * somtallocMethodList(Entry *cls, boolean all);

2026/01/16 04:46 41/101 Quick history

osFree wiki - https://osfree.su/doku/

SOMEXTERN Mlist * SOMLINK somtallocMethodListSL(Entry *cls, boolean all);

Note: somtallocMethodList version uses default compiler calling convention. For IBM SOM 3.0 for NT it
is Optlink.

somtclsfilename, somtclsfilenameSL function

SOMEXTERN char * somtclsfilename(Entry * cls);
SOMEXTERN char * SOMLINK somtclsfilenameSL(Entry * cls);

Note: somtclsfilename version uses default compiler calling convention. For IBM SOM 3.0 for NT it is
Optlink.

somtclsname, somtclsnameSL function

SOMEXTERN char * somtclsname(Entry * cls);
SOMEXTERN char * SOMLINK somtclsnameSL(Entry * cls);

Return name of class <cls>.

Note: somclsname version uses default compiler calling convention. For IBM SOM 3.0 for NT it is
Optlink.

somtfindMethodName, somtfindMethodNameSL function

SOMEXTERN char * somtfindMethodName(const char *bp, char *name);
SOMEXTERN char * SOMLINK somtfindMethodNameSL(const char *bp, char *name);

Note: somtfindMethodName version uses default compiler calling convention. For IBM SOM 3.0 for NT
it is Optlink.

somtfullPrototype, somtfullPrototypeSL function

SOMEXTERN char * somtfullPrototype(char *buf, Entry * method, char *sep, int
varargs);
SOMEXTERN char * SOMLINK somtfullPrototypeSL(char *buf, Entry * method, char
*sep, int varargs);

Note: somtfullPrototype version uses default compiler calling convention. For IBM SOM 3.0 for NT it is
Optlink.

somtfullTypedef, somtfullTypedefSL function

SOMEXTERN char * somtfullTypedef(char *buf, Entry * cls, Entry * method);

Last update: 2024/09/18 15:00 en:docs:tk:som https://osfree.su/doku/doku.php?id=en:docs:tk:som&rev=1726671600

https://osfree.su/doku/ Printed on 2026/01/16 04:46

SOMEXTERN char * SOMLINK somtfullTypedefSL(char *buf, Entry * cls, Entry *
method);

Note: somtfullTypedef version uses default compiler calling convention. For IBM SOM 3.0 for NT it is
Optlink.

somtgetNonRepeatedParent, somtgetNonRepeatedParentSL function

SOMEXTERN char * somtgetNonRepeatedParent(Entry *cls, int i);
SOMEXTERN char * SOMLINK somtgetNonRepeatedParentSL(Entry *cls, int i);

Note: somtgetNonRepeatedParent version uses default compiler calling convention. For IBM SOM 3.0
for NT it is Optlink.

somtgetatt, somtgetattSL function

SOMEXTERN char * somtgetatt(Entry * ep, char *s);
SOMEXTERN char * SOMLINK somtgetattSL(Entry * ep, char *s);

somtgetdatt, somtgetdattSL function

SOMEXTERN char * somtgetdatt(Entry * ep, char *s);
SOMEXTERN char * SOMLINK somtgetdattSL(Entry * ep, char *s);

somtgetAbistyle, somtgetAbistyleSL function

SOMEXTERN enum SOMTABIStyle somtgetAbistyle(Entry * ep);
SOMEXTERN enum SOMTABIStyle SOMLINK somtgetAbistyleSL(Entry * ep);

Return ABI style of Entry. At the current time returns always SOMTABIStyle_2

Note: somtgetABIStyle version uses default compiler calling convention. For IBM SOM 3.0 for NT it is
Optlink.

somtimplicit, somtimplicitSL function

SOMEXTERN char * somtimplicit(Entry *ep, boolean shortform, char *buf);
SOMEXTERN char * SOMLINK somtimplicitSL(Entry *ep, boolean shortform, char
*buf);

Note: somtimplicit version uses default compiler calling convention. For IBM SOM 3.0 for NT it is
Optlink.

2026/01/16 04:46 43/101 Quick history

osFree wiki - https://osfree.su/doku/

somtimplicitArgs, somtimplicitArgsSL function

SOMEXTERN char * somtimplicitArgs(Entry *ep);
SOMEXTERN char * SOMLINK somtimplicitArgsSL(Entry *ep);

Note: somtimplicitArgs version uses default compiler calling convention. For IBM SOM 3.0 for NT it is
Optlink.

somtincludeOnce, somtincludeOnceSL function

SOMEXTERN char * somtincludeOnceSL(Entry *cls, char *ext, char *buf);
SOMEXTERN char * SOMLINK somtincludeOnceSL(Entry *cls, char *ext, char
*buf);

Return token to <buf> for once include checks using name of class <cls> and extension <ext> in
form SOM_classname_ext.

Note: somtincludeOnce version uses default compiler calling convention. For IBM SOM 3.0 for NT it is
Optlink.

somtpclsfilename, somtpclsfilenameSL function

SOMEXTERN char * somtpclsfilename(Entry *parent);
SOMEXTERN char * SOMLINK somtpclsfilenameSL(Entry *parent);

Note: somtpclsfilename version uses default compiler calling convention. For IBM SOM 3.0 for NT it is
Optlink.

somtpclsname, somtpclsnameSL function

SOMEXTERN char * somtpclsname(Entry *parent);
SOMEXTERN char * SOMLINK somtpclsnameSL(Entry *parent);

Note: somtpclsname version uses default compiler calling convention. For IBM SOM 3.0 for NT it is
Optlink.

somtprefixedPrototype, somtprefixedPrototypeSL function

SOMEXTERN char * somtprefixedPrototype(char *buf, Entry * method, char *sep,
int varargs, char *prefix);
SOMEXTERN char * SOMLINK somtprefixedPrototypeSL(char *buf, Entry * method,
char *sep, int varargs, char *prefix);

Note: somtprefixedPrototype version uses default compiler calling convention. For IBM SOM 3.0 for NT
it is Optlink.

Last update: 2024/09/18 15:00 en:docs:tk:som https://osfree.su/doku/doku.php?id=en:docs:tk:som&rev=1726671600

https://osfree.su/doku/ Printed on 2026/01/16 04:46

somtreplaceDataName, somtreplaceDataNameSL function

SOMEXTERN char * somtreplaceDataName(char *buf, Entry * data, char
*replace);
SOMEXTERN char * SOMLINK somtreplaceDataNameSL(char *buf, Entry * data, char
*replace);

Note: somtreplaceDataName version uses default compiler calling convention. For IBM SOM 3.0 for NT
it is Optlink.

somtrmSelf, somtrmSelfSL function

SOMEXTERN char * somtrmSelf(char *str);
SOMEXTERN char * SOMLINK somtrmSelfSL(char *str);

Note: somtrmSelf version uses default compiler calling convention. For IBM SOM 3.0 for NT it is
Optlink.

somtshortArgList, somtshortArgListSL function

SOMEXTERN char * somtshortArgList(char *buf, Entry * method, char *sep,
boolean varargs, boolean addself);
SOMEXTERN char * SOMLINK somtshortArgListSL(char *buf, Entry * method, char
*sep, boolean varargs, boolean addself);

Note: somtshortArgList version uses default compiler calling convention. For IBM SOM 3.0 for NT it is
Optlink.

somtimplicitMeta, somtimplicitMetaSL function

SOMEXTERN int somtimplicitMeta(Entry *cls);
SOMEXTERN int SOMLINK somtimplicitMetaSL(Entry *cls);

Note: somtimplicitMeta version uses default compiler calling convention. For IBM SOM 3.0 for NT it is
Optlink.

somtlistAttribute, somtlistAttributeSL function

SOMEXTERN int somtlistAttribute(FILE * fp, int n, AttList * ap, char *s,
boolean value, boolean breakLine, boolean firstComma);
SOMEXTERN int SOMLINK somtlistAttributeSL(FILE * fp, int n, AttList * ap,
char *s, boolean value, boolean breakLine, boolean firstComma);

Note: somtlistAttribute version uses default compiler calling convention. For IBM SOM 3.0 for NT it is
Optlink.

2026/01/16 04:46 45/101 Quick history

osFree wiki - https://osfree.su/doku/

somtnewMethodsCount, somtnewMethodsCountSL function

SOMEXTERN int somtnewMethodsCount(Entry * cls, int meta, boolean procflg);
SOMEXTERN int SOMLINK somtnewMethodsCountSL(Entry * cls, int meta, boolean
procflg);

Note: somtnewMethodsCount version uses default compiler calling convention. For IBM SOM 3.0 for
NT it is Optlink.

somtprivateMethodsCount, somtprivateMethodsCountSL function

SOMEXTERN int somtprivateMethodsCount(Entry * cls, int meta);
SOMEXTERN int SOMLINK somtprivateMethodsCountSL(Entry * cls, int meta);

Note: somtprivateMethodsCount version uses default compiler calling convention. For IBM SOM 3.0 for
NT it is Optlink.

somtaddHeader, somtaddHeaderSL function

SOMEXTERN void somtaddHeader(char *file, FILE *fp, char *ext);
SOMEXTERN void SOMLINK somtaddHeaderSL(char *file, FILE *fp, char *ext);

Note: somtaddHeader version uses default compiler calling convention. For IBM SOM 3.0 for NT it is
Optlink.

somtcleanFiles, somtcleanFilesSL function

SOMEXTERN void somtcleanFiles(int status);
SOMEXTERN void SOMLINK somtcleanFilesSL(int status);

Delete temporary files and exit.

Note: somtcleanFiles version uses default compiler calling convention. For IBM SOM 3.0 for NT it is
Optlink.

somtdeclareIdlVarargs, somtdeclareIdlVarargsSL function

SOMEXTERN void somtdeclareIdlVarargs(FILE *fp, Entry *ep);
SOMEXTERN void SOMLINK somtdeclareIdlVarargsSL(FILE *fp, Entry *ep);

Note: somtdeclareIdlVarargs version uses default compiler calling convention. For IBM SOM 3.0 for NT
it is Optlink.

Last update: 2024/09/18 15:00 en:docs:tk:som https://osfree.su/doku/doku.php?id=en:docs:tk:som&rev=1726671600

https://osfree.su/doku/ Printed on 2026/01/16 04:46

somtdymain. somtdymainSL function

SOMEXTERN void somtdymain(char *file, Entry *cls, EmitFn emitfn, char
*emitter, int first, char *version, Stab *stab);
SOMEXTERN void SOMLINK somtdymainSL(char *file, Entry *cls, EmitFn emitfn,
char *emitter, int first, char *version, Stab *stab);

Note: somtdymain version uses default compiler calling convention. For IBM SOM 3.0 for NT it is
Optlink.

somtemitModuleTypes, somtemitModuleTypesSL function

SOMEXTERN void somtemitModuleTypes(FILE *fp, Entry *ep, Stab *stab);
SOMEXTERN void SOMLINK somtemitModuleTypesSL(FILE *fp, Entry *ep, Stab
*stab);

Note: somtemitModuleTypes version uses default compiler calling convention. For IBM SOM 3.0 for NT
it is Optlink.

somtemitPassthru, somtemitPassthruSL function

SOMEXTERN long somtemitPassthru(FILE * fp, Entry * cls, char *name, int
mode, char *att);
SOMEXTERN long SOMLINK somtemitPassthruSL(FILE * fp, Entry * cls, char
*name, int mode, char *att);

Note: somtemitPassthru version uses default compiler calling convention. For IBM SOM 3.0 for NT it is
Optlink.

somtfreeDataList, somtfreeDataListSL function

SOMEXTERN void somtfreeDataList(Mlist *mlist);
SOMEXTERN void SOMLINK somtfreeDataListSL(Mlist *mlist);

Note: somtfreeDataList version uses default compiler calling convention. For IBM SOM 3.0 for NT it is
Optlink.

somtfreeMethodList, somtfreeMethodListSL function

SOMEXTERN void somtfreeMethodList(Mlist *mlist);
SOMEXTERN void SOMLINK somtfreeMethodListSL(Mlist *mlist);

Note: somtfreeMethodList version uses default compiler calling convention. For IBM SOM 3.0 for NT it
is Optlink.

2026/01/16 04:46 47/101 Quick history

osFree wiki - https://osfree.su/doku/

somtfullComment, somtfullCommentSL function

SOMEXTERN void somtfullCommentSL(FILE * fp, char *fmt,...);
SOMEXTERN void SOMLINK somtfullCommentSL(FILE * fp, char *fmt,...);

Outout formatted string <fmt> to emitted file as comment using C-style comment via
somtoidlComment function;

Note: somtfullComment version uses default compiler calling convention. For IBM SOM 3.0 for NT it is
Optlink.

somthandleDiskFull, somthandleDiskFullSL function

SOMEXTERN void somthandleDiskFull(FILE *fp);
SOMEXTERN void SOMLINK somthandleDiskFullSL(FILE *fp);

Note: somthandleDiskFull version uses default compiler calling convention. For IBM SOM 3.0 for NT it
is Optlink.

somtinitialiseMeta, somtinitialiseMetaSL function

SOMEXTERN void somtinitialiseMeta(Entry * cls, Stab * stab, boolean meta,
int imp);
SOMEXTERN void SOMLINK somtinitialiseMetaSL(Entry * cls, Stab * stab,
boolean meta, int imp);

Note: somtinitialiseMeta version uses default compiler calling convention. For IBM SOM 3.0 for NT it is
Optlink.

somtoidlComment, somtoidlCommentSL function

SOMEXTERN void somtoidlComment(FILE * fp, int min, int max, char style, char
*comment);
SOMEXTERN void SOMLINK somtoidlCommentSL(FILE * fp, int min, int max, char
style, char *comment);

Output oidl-<style> <comment> to file <fp> from colon <min> up to colon <max>.

Note: Seems IBM SOM ignores <max> value.

Style is one of following:

'/' - each line started from "//#";
'#' - each line started from “#”;
'c' - C-style comment started from '/*' and ended with '*/'. each line started from "*";
's' -each line started from "--";
'd' - each line started from “;”;

Last update: 2024/09/18 15:00 en:docs:tk:som https://osfree.su/doku/doku.php?id=en:docs:tk:som&rev=1726671600

https://osfree.su/doku/ Printed on 2026/01/16 04:46

'+' - each line started from "//";

Other values forced to 'c' style.

<comment> can contains at offset 0 0x01 signature indicating comment style. If style is zero the
used style from comment position 1. Two first symbols of comment are ignored if style signature is
present.

Note: somtoidlComment version uses default compiler calling convention. For IBM SOM 3.0 for NT it is
Optlink.

somtscmsg, somtscmsgSL function

SOMEXTERN void somtscmsg(Entry *cls, Entry *ep, char *fmt, ...);
SOMEXTERN void SOMLINK somtscmsgSL(Entry *cls, Entry *ep, char *fmt, ...);

Note: somtscmsg version uses default compiler calling convention. For IBM SOM 3.0 for NT it is
Optlink.

somtshortDefine, somtshortDefineSL function

SOMEXTERN void somtshortDefine(FILE *fp, Entry *ep, char *fmt, ...);
SOMEXTERN void SOMLINK somtshortDefineSL(FILE *fp, Entry *ep, char *fmt,
...);

Note: somtshortDefine version uses default compiler calling convention. For IBM SOM 3.0 for NT it is
Optlink.

somtuninitialiseMeta, somtuninitialiseMetaSL function

SOMEXTERN void somtuninitialiseMeta(Entry * cls);
SOMEXTERN void SOMLINK somtuninitialiseMetaSL(Entry * cls);

Note: somtuninitialiseMeta version uses default compiler calling convention. For IBM SOM 3.0 for NT it
is Optlink.

somtobseleteHeaderFile, somtobseleteHeaderFileSL function

SOMEXTERN FILE * somtobseleteHeaderFile(char *file, Entry *cls, char *ext,
char *newext);
SOMEXTERN FILE * SOMLINK somtobseleteHeaderFileSL(char *file, Entry *cls,
char *ext, char *newext);

Open emit file and write info about obsolete header. Return file pointer.

Note: somtoboleteHeaderFile version uses default compiler calling convention. For IBM SOM 3.0 for NT

2026/01/16 04:46 49/101 Quick history

osFree wiki - https://osfree.su/doku/

it is Optlink.

somtwidenType, somtwidenTypeSL function

SOMEXTERN char * somtwidenType(Entry *ep, char *args, char *type);
SOMEXTERN char * SOMLINK somtwidenTypeSL(Entry *ep, char *args, char *type);

Note: somtwidenType version uses default compiler calling convention. For IBM SOM 3.0 for NT it is
Optlink.

somtgenAttStubs, somtgenAttStubsSL function

SOMEXTERN void somtgenAttStubs(FILE *fp, Entry *cls, char *prefix, char
*classprefix);
SOMEXTERN void SOMLINK somtgenAttStubsSL(FILE *fp, Entry *cls, char *prefix,
char *classprefix);

Note: somtgenAttStubs version uses default compiler calling convention. For IBM SOM 3.0 for NT it is
Optlink.

somtstrictidl, somtstrictidlSL function

SOMEXTERN void somtstrictidl(FILE *fp);
SOMEXTERN void SOMLINK somtstrictidlSL(FILE *fp);

Output definition of SOM_STRICT_IDL macro if somadd variable is TRUE;

Note: somtstrictidl version uses default compiler calling convention. For IBM SOM 3.0 for NT it is
Optlink.

somtcreateTypeCodes, somtcreateTypeCodesSL function

SOMEXTERN void somtcreateTypeCodes (Stab *stab);
SOMEXTERN void SOMLINK somtcreateTypeCodesSL(Stab *stab);

Note: somtcreateTypeCodes version uses default compiler calling convention. For IBM SOM 3.0 for NT
it is Optlink.

somtemitTcConstant, somtemitTcConstantSL function

SOMEXTERN TypeCode * somtemitTcConstant(TypeCode t, FILE *f, char *name,
TypeCode *alreadyDone);
SOMEXTERN TypeCode * SOMLINK somtemitTcConstantSL(TypeCode t, FILE *f, char
*name, TypeCode *alreadyDone);

Last update: 2024/09/18 15:00 en:docs:tk:som https://osfree.su/doku/doku.php?id=en:docs:tk:som&rev=1726671600

https://osfree.su/doku/ Printed on 2026/01/16 04:46

Note: somtemitTcConstant version uses default compiler calling convention. For IBM SOM 3.0 for NT it
is Optlink.

somtemitPredefinedTcConstants, somtemitPredefinedTcConstantsSL function

SOMEXTERN void somtemitPredefinedTcConstants (FILE *f);
SOMEXTERN void SOMLINK somtemitPredefinedTcConstantsSL(FILE *f);

Note: somtemitPredefinedTcConstants version uses default compiler calling convention. For IBM SOM
3.0 for NT it is Optlink.

somtAncestorClass, somtAncestorClassSL function

SOMEXTERN Entry * somtAncestorClass(Entry *cls, char *name);
SOMEXTERN Entry * SOMLINK somtAncestorClassSL(Entry *cls, char *name);

Note: somtAncestorClass version uses default compiler calling convention. For IBM SOM 3.0 for NT it is
Optlink.

somttcAlignment, somttcAlignmentSL function

SOMEXTERN short somttcAlignment (TypeCode t, Environment *ev);
SOMEXTERN short SOMLINK somttcAlignmentSL(TypeCode t, Environment *ev);

Note: somttcAlignment version uses default compiler calling convention. For IBM SOM 3.0 for NT it is
Optlink.

somttcSize, somttcSizeSL function

SOMEXTERN long somttcSize (TypeCode t, Environment *ev);
SOMEXTERN long SOMLINK somttcSizeSL(TypeCode t, Environment *ev);

Note: somttcSize version uses default compiler calling convention. For IBM SOM 3.0 for NT it is
Optlink.

somttcKind, somttcKindSL function

SOMEXTERN TCKind somttcKind (TypeCode t, Environment *ev);
SOMEXTERN TCKind SOMLINK somttcKindSL(TypeCode t, Environment *ev);

Note: somttcKind version uses default compiler calling convention. For IBM SOM 3.0 for NT it is
Optlink.

2026/01/16 04:46 51/101 Quick history

osFree wiki - https://osfree.su/doku/

somttcSeqFromListString, somttcSeqFromListStringSL function

SOMEXTERN sequence(string) somttcSeqFromListString (string s);
SOMEXTERN sequence(string) SOMLINK somttcSeqFromListStringSL(string s);

Note: somttcSeqFromListString version uses default compiler calling convention. For IBM SOM 3.0 for
NT it is Optlink.

somtGetReintroducedMethods, somtGetReintroducedMethodsSL function

SOMEXTERN _IDL_SEQUENCE_EntryPtr somtGetReintroducedMethods(Entry *cls);
SOMEXTERN _IDL_SEQUENCE_EntryPtr SOMLINK somtGetReintroducedMethodsSL(Entry
*cls);

Note: somtGetReintroducedMethods version uses default compiler calling convention. For IBM SOM
3.0 for NT it is Optlink.

Symbol table support functions

somtallocBuf, somtallocBufSL function

Note: somtallocBuf version uses default compiler calling convention. For IBM SOM 3.0 for NT it is
Optlink.

somtuniqString, somtuniqStringSL function

SOMEXTERN char * somtuniqString(MemBuf *membuf, char *s);
SOMEXTERN char * SOMLINK somtuniqStringSL(MemBuf *membuf, char *s);

Check is string unique and return NULL if not, or string itself if unique;

Note: somtuniqString version uses default compiler calling convention. For IBM SOM 3.0 for NT it is
Optlink.

somtkeyword, somtkeywordSL function

SOMEXTERN long somtkeyword(KeytabEntry *keytab, char *kword, long
keytabsize);
SOMEXTERN long SOMLINK somtkeywordSL(KeytabEntry *keytab, char *kword, long
keytabsize);

Return token for keyword <kword> from keytaable <keytab> of <keytabsize> size.

Last update: 2024/09/18 15:00 en:docs:tk:som https://osfree.su/doku/doku.php?id=en:docs:tk:som&rev=1726671600

https://osfree.su/doku/ Printed on 2026/01/16 04:46

Note: somtkeyword version uses default compiler calling convention. For IBM SOM 3.0 for NT it is
Optlink.

somtaddEntry, somtaddEntrySL function

SOMEXTERN void * somtaddEntry(Stab *stab, char *name, void *ep);
SOMEXTERN void * SOMLINK somtaddEntrySL(Stab *stab, char *name, void *ep);

Add entry <ep> with name <name> to symbol table <stab>. Buffer for entry allocated by function.

Note: somtaddEntry version uses default compiler calling convention. For IBM SOM 3.0 for NT it is
Optlink.

somtgetEntry, somtgetEntrySL function

SOMEXTERN void * somtgetEntry(Stab *stab, char *name);
SOMEXTERN void * SOMLINK somtgetEntrySL(Stab *stab, char *name);

Return pointer to entry structure with name equal to <name> from symbol table <stab>

Note: somtgetEntry version uses default compiler calling convention. For IBM SOM 3.0 for NT it is
Optlink.

somtstabFirst, somtstabFirstSL function

SOMEXTERN void * somtstabFirst(Stab *stab, Sep **sepp);
SOMEXTERN void * SOMLINK somtstabFirstSL(Stab *stab, Sep **sepp);

Return first entry from symbol table <stab> and, optionally, returns sep entry in <sepp>.

Note: somtstabFirst version uses default compiler calling convention. For IBM SOM 3.0 for NT it is
Optlink.

somtstabNext, somtstabNextSL function

SOMEXTERN void * somtstabNext(Stab *stab, Sep **sepp);
SOMEXTERN void * SOMLINK somtstabNextSL(Stab *stab, Sep **sepp);

Return next after last search entry from symbol table <stab> and, optionally, returns sep entry in
<sepp>.

Note: somtstabNext version uses default compiler calling convention. For IBM SOM 3.0 for NT it is
Optlink.

2026/01/16 04:46 53/101 Quick history

osFree wiki - https://osfree.su/doku/

somtstabFirstName, somtstabFirstNameSL function

SOMEXTERN void * somtstabFirstName(Stab *stab, char *name, Sep **sepp);
SOMEXTERN void * SOMLINK somtstabFirstNameSL(Stab *stab, char *name, Sep
**sepp);

Return first entry with <name> from symbol table <stab> and, optionally, returns sep entry in
<sepp>.

Note: somtstabFirstName version uses default compiler calling convention. For IBM SOM 3.0 for NT it
is Optlink.

somtstabNextName, somtstabNextNameSL function

SOMEXTERN void * somtstabNextName(Stab *stab, Sep **sepp);
SOMEXTERN void * SOMLINK somtstabNextNameSL(Stab *stab, Sep **sepp);

Return next after last search entry from symbol table <stab> and, optionally, returns sep entry in
<sepp>.

Note: somtstabNextName version uses default compiler calling convention. For IBM SOM 3.0 for NT it
is Optlink.

somtcreateMemBuf, somtcreateMemBufSL function

SOMEXTERN void somtcreateMemBuf(MemBuf **membufp, size_t bufsize, long
stabsize);
SOMEXTERN void SOMLINK somtcreateMemBufSL(MemBuf **membufp, size_t bufsize,
long stabsize);

Note: somtcreateMemBuf version uses default compiler calling convention. For IBM SOM 3.0 for NT it
is Optlink.

somtcreateStab, somtcreateStabSL function

SOMEXTERN void somtcreateStab(Stab *stab, long stabsize, long entrysize);
SOMEXTERN void SOMLINK somtcreateStabSL(Stab *stab, long stabsize, long
entrysize);

Initialize symbol table structure <stab> using hash index size <stabsize> and entry size <entrysize>.

Note: somtcreateStab version uses default compiler calling convention. For IBM SOM 3.0 for NT it is
Optlink.

Last update: 2024/09/18 15:00 en:docs:tk:som https://osfree.su/doku/doku.php?id=en:docs:tk:som&rev=1726671600

https://osfree.su/doku/ Printed on 2026/01/16 04:46

somticstrcmp, somticstrcmpSL function

SOMEXTERN int somticstrcmp(char *s, char *t)
SOMEXTERN int SOMLINK somticstrcmpSL(char *s, char *t);

Alias of C stricmp.

Note: somticstrcmp version uses default compiler calling convention. For IBM SOM 3.0 for NT it is
Optlink.

somtaddEntryBuf, somtaddEntryBufSL function

SOMEXTERN void * somtaddEntryBuf(Stab *stab, char *name, void *ep, void
*buf, size_t len);
SOMEXTERN void * SOMLINK somtaddEntryBufSL(Stab *stab, char *name, void *ep,
void *buf, size_t len);

Add entry <ep> with name <name> to symbol table <stab> to buffer <buf> with size <len>

Note: somtaddEntryBuf version uses default compiler calling convention. For IBM SOM 3.0 for NT it is
Optlink.

somtfreeStab, somtfreeStabSL function

SOMEXTERN void somtfreeStab(Stab *stab, BOOL freeEp);
SOMEXTERN void SOMLINK somtfreeStabSL(Stab *stab, BOOL freeEp);

Note: somtfreeStab version uses default compiler calling convention. For IBM SOM 3.0 for NT it is
Optlink.

3. somFree Emitter Framework

SOMTAttributeEntryC Class

somtIsReadonly attribute

readonly attribute boolean somtIsReadonly;

Whether the attribute is readonly.

2026/01/16 04:46 55/101 Quick history

osFree wiki - https://osfree.su/doku/

somtAttribType attribute

readonly attribute SOMTEntryC somtAttribType;

The type of the attribute. This does not include pointer stars or array declarators. To get the “full”
type, get each attribute declarator and get the somtType attribute.

somtGetFirstAttributeDeclarator method

SOMTDataEntryC somtGetFirstAttributeDeclarator();

The first attribute declarator for this attribute declaration.

somtGetNextAttributeDeclarator method

SOMTDataEntryC somtGetNextAttributeDeclarator();

The next attribute declarator for this attribute declaration, relative to the previous call to this method
or somtGetFirstAttributeDeclarator.

somtGetFirstGetMethod method

SOMTMethodEntryC somtGetFirstGetMethod();

The first get method for this attribute declaration.

somtGetNextGetMethod method

SOMTMethodEntryC somtGetNextGetMethod();

The next get method for this attribute declaration, relative to the previous call to this method or
somtGetFirstGetMethod.

somtGetFirstSetMethod method

SOMTMethodEntryC somtGetFirstSetMethod();

The first set method for this attribute declaration.

somtGetNextSetMethod method

Last update: 2024/09/18 15:00 en:docs:tk:som https://osfree.su/doku/doku.php?id=en:docs:tk:som&rev=1726671600

https://osfree.su/doku/ Printed on 2026/01/16 04:46

SOMTMethodEntryC somtGetNextSetMethod();

The next set method for this attribute declaration, relative to the previous call to this method or
somtGetFirstSetMethod.

SOMTBaseClassEntryC Class

somtBaseClassDef attribute

readonly attribute SOMTClassEntryC somtBaseClassDef;

Returns the class definition entry for the Base class named in this entry.

SOMTClassEntryC Class

somtSourceFileName attribute

readonly attribute string somtSourceFileName;

Returns the name of file containing the definition of this class.

somtMetaClassEntry attribute

readonly attribute SOMTMetaClassEntryC somtMetaClassEntry;

Returns the entry for the meta class statement in class definition or NULL if there is no meta class
statement.

Note: the SOM architecture requires that all classes have a meta class, however <SOMClass> is its
own metaclass. Thus, any attempt to walk up the metaclass chain must terminate when it finds a
class that is its own meta class, otherwise an infinite loop is possible.

somtClassModule attribute

readonly attribute SOMTModuleEntryC somtClassModule;

The module that contains this class, or NULL if there is not one.

somtNewMethodCount attribute

readonly attribute long somtNewMethodCount;

2026/01/16 04:46 57/101 Quick history

osFree wiki - https://osfree.su/doku/

Returns the number of new methods introduced in this class definition.

somtLocalInclude attribute

readonly attribute boolean somtLocalInclude;

Returns true if the header files associated with this class definition should be included using local
search, eg, “name.h” instead of <name.h>

somtPrivateMethodCount attribute

readonly attribute long somtPrivateMethodCount;

Returns number of new private methods in class.

somtStaticMethodCount attribute

readonly attribute long somtStaticMethodCount;

Returns number of new static methods in class.

somtOverrideMethodCount attribute

readonly attribute long somtOverrideMethodCount;

Returns number of new override methods in class.

somtProcMethodCount attribute

readonly attribute long somtProcMethodCount;

Returns number of procedure methods for class.

somtVAMethodCount attribute

readonly attribute long somtVAMethodCount;

Returns number of VarArg methods for class.

somtBaseCount attribute

Last update: 2024/09/18 15:00 en:docs:tk:som https://osfree.su/doku/doku.php?id=en:docs:tk:som&rev=1726671600

https://osfree.su/doku/ Printed on 2026/01/16 04:46

readonly attribute long somtBaseCount;

Returns number of base classes for class.

somtExternalDataCount attribute

readonly attribute long somtExternalDataCount;

Returns number of external (public or private) data members for class.

somtPublicDataCount attribute

readonly attribute long somtPublicDataCount;

Returns number of public data members for class.

somtPrivateDataCount attribute

readonly attribute long somtPrivateDataCount;

Returns number of private data members for class.

somtMetaclassFor attribute

readonly attribute SOMTClassEntryC somtMetaclassFor;

If this is a metaclass, the class for which it is a metaclass, else NULL.

somtForwardRef attribute

readonly attribute boolean somtForwardRef;

Whether this is a forward reference or not.

somtGetFirstBaseClass method

SOMTBaseClassEntryC somtGetFirstBaseClass();

Returns the entry for the “left most” direct base class form for this class, if it has one and NULL
otherwise.

Note: <SOMObject> does not have any base classes and therefore will terminate an attempt to walk

2026/01/16 04:46 59/101 Quick history

osFree wiki - https://osfree.su/doku/

up the base class chain.

somtGetNextBaseClass method

SOMTBaseClassEntryC somtGetNextBaseClass();

Returns the entry for the next direct base class form of this class, if it has one and NULL otherwise.
The direct base classes of a derived class are ordered from “left to right”.

somtGetFirstReleaseName method

string somtGetFirstReleaseName();

Returns the first name in the release order statement for this entry if it has one and NULL otherwise.

somtGetNextReleaseName method

string somtGetNextReleaseName();

Returns the next name in the release order statement for this entry if it has one and NULL otherwise.

somtGetReleaseNameList method

long somtGetReleaseNameList(in string buffer);

Puts all the release names in <buffer> in template output form, buffer must be large enough, no tests
are made. The number of release names is returned.

somtGetFirstPassthru method

SOMTPassthruEntryC somtGetFirstPassthru();

Returns the first passthru entry for this class definition if it has one and NULL otherwise.

somtGetNextPassthru method

SOMTPassthruEntryC somtGetNextPassthru();

Returns the next passthru entry for this class definition if it has one and NULL otherwise. The passthru
entry will be returned in an order based on the appearence of passthru statements in the class
definition.

Last update: 2024/09/18 15:00 en:docs:tk:som https://osfree.su/doku/doku.php?id=en:docs:tk:som&rev=1726671600

https://osfree.su/doku/ Printed on 2026/01/16 04:46

somtGetFirstData method

SOMTDataEntryC somtGetFirstData();

Returns the first data entry for this class definition if it has one and NULL otherwise.

somtGetNextData method

SOMTDataEntryC somtGetNextData();

Returns the next data entry for this class definition if it has one and NULL otherwise. The data entries
will be returned in an order based on the appearence data member declarations in the class
definition.

somtGetFirstStaticData method

SOMTDataEntryC somtGetFirstStaticData();

Returns the first static data entry for this class definition if it has one and NULL otherwise. Static data
is handled specialy in SOM so a different accessor method is provided.

somtGetNextStaticData method

SOMTDataEntryC somtGetNextStaticData();

Returns the next static data entry for this class definition if it has one and NULL otherwise. The data
entries will be returned in an order based on the release order

somtGetFirstMethod method

SOMTMethodEntryC somtGetFirstMethod();

Returns the first method entry for this class definition if it has one and NULL otherwise. Method
entries may be for new or overridden methods.

somtGetNextMethod method

SOMTMethodEntryC somtGetNextMethod();

Returns the next method entry for this class definition if it has one and NULL otherwise. The method
entries will be returned in an order based on the appearence method declarations in the class
definition. Method entries may be for new or overridden methods.

2026/01/16 04:46 61/101 Quick history

osFree wiki - https://osfree.su/doku/

somtGetFirstInheritedMethod method

SOMTMethodEntryC somtGetFirstInheritedMethod();

Returns the first inherited and not overridden method entry for this class definition if it has one and
NULL otherwise.

somtGetNextInheritedMethod method

SOMTMethodEntryC somtGetNextInheritedMethod();

Returns the next inherited and not overridden method entry for this class definition if it has one and
NULL otherwise. The method entries will be returned in an unspecified, but constant order.

somtGetFirstAttribute method

SOMTAttributeEntryC somtGetFirstAttribute();

somtGetNextAttribute method

SOMTAttributeEntryC somtGetNextAttribute();

somtGetFirstStruct method

SOMTStructEntryC somtGetFirstStruct();

somtGetNextStruct method

SOMTStructEntryC somtGetNextStruct();

somtGetFirstTypedef method

SOMTTypedefEntryC somtGetFirstTypedef();

somtGetNextTypedef method

SOMTTypedefEntryC somtGetNextTypedef();

Last update: 2024/09/18 15:00 en:docs:tk:som https://osfree.su/doku/doku.php?id=en:docs:tk:som&rev=1726671600

https://osfree.su/doku/ Printed on 2026/01/16 04:46

somtGetFirstUnion method

SOMTUnionEntryC somtGetFirstUnion();

somtGetNextUnion method

SOMTUnionEntryC somtGetNextUnion();

somtGetFirstEnum method

SOMTEnumEntryC somtGetFirstEnum();

somtGetNextEnum method

SOMTEnumEntryC somtGetNextEnum();

somtGetFirstConstant method

SOMTConstEntryC somtGetFirstConstant();

somtGetNextConstant method

SOMTConstEntryC somtGetNextConstant();

somtGetFirstSequence method

SOMTSequenceEntryC somtGetFirstSequence();

somtGetNextSequence method

SOMTSequenceEntryC somtGetNextSequence();

somtGetFirstPubdef method

SOMTEntryC somtGetFirstPubdef();

somtGetNextPubdef method

2026/01/16 04:46 63/101 Quick history

osFree wiki - https://osfree.su/doku/

SOMTEntryC somtGetNextPubdef();

somtFilterNew method

boolean somtFilterNew(in SOMTMethodEntryC entry);

Returns 1 if entry is new in the class.

somtFilterOverridden method

boolean somtFilterOverridden(in SOMTMethodEntryC entry);

Returns 1 if entry is an overriding method of the class.

somtFilterPrivOrPub method

boolean somtFilterPrivOrPub(in SOMTCommonEntryC entry);

Returns TRUE if entry is Private or Public.

SOMTCommonEntryC Class

somtTypeObj attribute

readonly attribute SOMTEntryC somtTypeObj;

The object representing the base type of the entry. This does not include pointer stars or array
declarators.

somtPtrs attribute

readonly attribute string somtPtrs;

The string of stars associated with the entry's type. For example, an object of type “foo” would have
somtPtrs = NULL, type “foo *” would have somtPtrs = “*”, type “foo **” would have somtPtrs = “**”,
etc.

somtArrayDimsString attribute

readonly attribute string somtArrayDimsString;

Last update: 2024/09/18 15:00 en:docs:tk:som https://osfree.su/doku/doku.php?id=en:docs:tk:som&rev=1726671600

https://osfree.su/doku/ Printed on 2026/01/16 04:46

Array dimensions in string form.

somtGetFirstArrayDimension method

unsigned long somtGetFirstArrayDimension();

The first array dimension, for items of type array. Zero indicates that the item is not an array.

somtGetNextArrayDimension method

unsigned long somtGetNextArrayDimension();

The next array dimension, for items of type array, relative to the previous call to this method or to
somtGetFirstArrayDimension. Zero indicates no more dimensions.

somtSourceText attribute

readonly attribute string somtSourceText;

The un-parsed source text for this entry, with leading and trailing white space removed. For
attribute/typedef declarators and for user-defined types, this attribute only provides the source text
for the entry's name. For methods, arguments, and instance variables, however, this attribute
provides the full definition.

somtType attribute

readonly attribute string somtType;

The IDL type for this entry in string form. For methods this is the return type. For data or parameters
this is the type of the data item or parameter. For user-defined types, this is the type specification. It
is of the form: <typename><pointer-stars> <array-declarators>

somtVisibility attribute

readonly attribute somtVisibilityT somtVisibility;

The visibility of this entry. Note: the visibility of parameter entries will always be public, and methods
can never be internal.

somtIsArray method

boolean somtIsArray(out long size);

2026/01/16 04:46 65/101 Quick history

osFree wiki - https://osfree.su/doku/

Returns 1 (true) if the type involves an array. When the type involves an array then <size> is set to
be the size of the array.

somtIsPointer method

boolean somtIsPointer();

Returns 1 (true) if the type involves a pointer, and 0 (false) otherwise

SOMTConstEntryC Class

somtConstTypeObj attribute

readonly attribute SOMTEntryC somtConstTypeObj;

A pointer to an object representing the type of the const.

somtConstType attribute

readonly attribute string somtConstType;

The type of the constant's value.

somtConstStringVal attribute

readonly attribute string somtConstStringVal;

The string value of the constant (unevaluated).

somtConstNumVal attribute

readonly attribute unsigned long somtConstNumVal;

The number value of the constant. This attribute is not valid if the value cannot be stored in an
unsigned long (string, float, double, negative). The somtConstIsNegative attribute can be used to
determine if the value is negative. The somtConstType attribute can be used to determine whether
the value is a float or double.

somtConstNumNegVal attribute

readonly attribute long somtConstNumNegVal;

Last update: 2024/09/18 15:00 en:docs:tk:som https://osfree.su/doku/doku.php?id=en:docs:tk:som&rev=1726671600

https://osfree.su/doku/ Printed on 2026/01/16 04:46

The number value of the constant, if negative.

somtConstIsNegative attribute

readonly attribute boolean somtConstIsNegative;

Whether the constant's value is a negative integer and must be obtained using somtConstNumNegVal
rather than somtConstNumVal.

somtConstVal attribute

readonly attribute string somtConstVal;

The string value of the constant (evaluated). The “get” method for this attribute returns a string
whose ownership is transferred to the caller.

SOMTDataEntryC Class

somtIsSelfRef attribute

readonly attribute boolean somtIsSelfRef;

Whether a declarator of a struct is self-referential.

SOMTEmitC Class

somtTemplate attribute

attribute SOMTTemplateOutputC somtTemplate;

The template is to provide template output and maintains a symbol table that provides a sort of
global context for the emitter.

somtTargetFile attribute

attribute FILE *somtTargetFile;

The target file is the one to which all emitter output is to be directed.

somtTargetClass attribute

2026/01/16 04:46 67/101 Quick history

osFree wiki - https://osfree.su/doku/

attribute SOMTClassEntryC somtTargetClass;

The target class is the class definition for which code is to be emitted.

somtTargetModule attribute

attribute SOMTModuleEntryC somtTargetModule;

The target module is the module definition for which code is to be emitted.

somtTargetType attribute

attribute SOMTTargetTypeT somtTargetType;

The target type indicates what type of output file is being produced, public, private, or
implementation. This allows the same emitter subclass to produce several different output files that
generally differ only in how much of the class definition they cover. Eg, .csc, .sc, and .psc. This is
attribute is for OIDL compatibility only.

somtEmitterName attribute

attribute string somtEmitterName;

The short name of the emitter (the name used to invoke it via the SOM Compiler. Typically this is the
file stem of the subclass of SOMTEmitC. This attribute should be set in the driver program that runs
the emitter. It is used to filter passthrus so that only passthrus directed to a particular emitter are
seen by it.

somtGenerateSections method

boolean somtGenerateSections();

Calls each of the section methods in order. The order is:

 somtEmitProlog
 when emitting a class:
 somtEmitClass
 somtEmitBase
 somtEmitMeta
 somtEmitConstant
 somtEmitTypedef
 somtEmitStruct
 somtEmitUnion
 somtEmitEnum
 when emitting a class:

Last update: 2024/09/18 15:00 en:docs:tk:som https://osfree.su/doku/doku.php?id=en:docs:tk:som&rev=1726671600

https://osfree.su/doku/ Printed on 2026/01/16 04:46

 somtEmitAttribute
 somtEmitMethod
 somtEmitRelease
 somtEmitPassthru
 somtEmitData
 when emitting a module:
 somtEmitInterface
 somtEmitModule
 somtEmitEpilog

This method will need to be overridden by many emitters in order to rearange the order of the
sections and to add or delete sections.

Note: repeating sections such as methods, data, and passthru, have a prolog and epilog method as
well. The prolog method is called before the first sections is processed and the epilog method is called
after the last section is processed.

somtOpenSymbolsFile method

FILE* somtOpenSymbolsFile(in string file, in string mode);

This method attempts to open the symbols file. If file doesn't exist then it will attempt to find it in the
directories specified in the SMINCLUDE environment variable. If the file can be found a FILE * pointer
is returned, otherwise NULL is returned.

somtSetPredefinedSymbols method

void somtSetPredefinedSymbols();

Set predefined symbols that are used for such things as section names etc.

somtFileSymbols method

void somtFileSymbols();

Symbols that are common to the file. This includes the target class symbols, and the metaclass
symbols, and special symbols like <timeStamp>. IE, all symbols that have a single definition.

somtEmitProlog method

void somtEmitProlog();

somtEmitBaseIncludesProlog method

2026/01/16 04:46 69/101 Quick history

osFree wiki - https://osfree.su/doku/

void somtEmitBaseIncludesProlog();

somtEmitBaseIncludes method

void somtEmitBaseIncludes(in SOMTBaseClassEntryC base);

somtEmitBaseIncludesEpilog method

void somtEmitBaseIncludesEpilog();

somtEmitMetaInclude method

void somtEmitMetaInclude();

somtEmitClass method

void somtEmitClass();

somtEmitMeta method

void somtEmitMeta();

somtEmitBaseProlog method

void somtEmitBaseProlog();

somtEmitBase method

void somtEmitBase(in SOMTBaseClassEntryC base);

somtEmitBaseEpilog method

void somtEmitBaseEpilog();

somtEmitPassthruProlog method

void somtEmitPassthruProlog();

Last update: 2024/09/18 15:00 en:docs:tk:som https://osfree.su/doku/doku.php?id=en:docs:tk:som&rev=1726671600

https://osfree.su/doku/ Printed on 2026/01/16 04:46

somtEmitPassthru method

void somtEmitPassthru(in SOMTPassthruEntryC entry);

somtEmitPassthruEpilog method

void somtEmitPassthruEpilog();

somtEmitRelease method

void somtEmitRelease();

somtEmitDataProlog method

void somtEmitDataProlog();

somtEmitData method

void somtEmitData(in SOMTDataEntryC entry);

somtEmitDataEpilog method

void somtEmitDataEpilog();

somtEmitAttributeProlog method

void somtEmitAttributeProlog();

somtEmitAttribute method

void somtEmitAttribute(in SOMTAttributeEntryC att);

somtEmitAttributeEpilog method

void somtEmitAttributeEpilog();

somtEmitConstantProlog method

2026/01/16 04:46 71/101 Quick history

osFree wiki - https://osfree.su/doku/

void somtEmitConstantProlog();

somtEmitConstant method

void somtEmitConstant(in SOMTConstEntryC con);

somtEmitConstantEpilog method

void somtEmitConstantEpilog();

somtEmitTypedefProlog method

void somtEmitTypedefProlog();

somtEmitTypedef method

void somtEmitTypedef(in SOMTTypedefEntryC td);

somtEmitTypedefEpilog method

void somtEmitTypedefEpilog();

somtEmitStructProlog method

void somtEmitStructProlog();

somtEmitStruct method

void somtEmitStruct(in SOMTStructEntryC struc);

somtEmitStructEpilog method

void somtEmitStructEpilog();

somtEmitUnionProlog method

void somtEmitUnionProlog();

Last update: 2024/09/18 15:00 en:docs:tk:som https://osfree.su/doku/doku.php?id=en:docs:tk:som&rev=1726671600

https://osfree.su/doku/ Printed on 2026/01/16 04:46

somtEmitUnion method

void somtEmitUnion(in SOMTUnionEntryC un);

somtEmitUnionEpilog method

void somtEmitUnionEpilog();

somtEmitEnumProlog method

void somtEmitEnumProlog();

somtEmitEnum method

void somtEmitEnum(in SOMTEnumEntryC en);

somtEmitEnumEpilog method

void somtEmitEnumEpilog();

somtEmitInterfaceProlog method

void somtEmitInterfaceProlog();

somtEmitInterface method

void somtEmitInterface(in SOMTClassEntryC intfc);

somtEmitInterfaceEpilog method

void somtEmitInterfaceEpilog();

somtEmitModuleProlog method

void somtEmitModuleProlog();

somtEmitModule method

2026/01/16 04:46 73/101 Quick history

osFree wiki - https://osfree.su/doku/

void somtEmitModule(in SOMTModuleEntryC mod);

somtEmitModuleEpilog method

void somtEmitModuleEpilog();

somtEmitMethodsProlog method

void somtEmitMethodsProlog();

somtEmitMethods method

void somtEmitMethods(in SOMTMethodEntryC method);

somtEmitMethodsEpilog method

void somtEmitMethodsEpilog();

somtEmitMethod method

void somtEmitMethod(in SOMTMethodEntryC entry);

somtEmitEpilog method

void somtEmitEpilog();

somtScanBases method

boolean somtScanBases(in string prolog, in string each, in string epilog);

somtScanBaseIncludes method

boolean somtScanBaseIncludes(in string prolog, in string each, in string
epilog);

somtCheckVisibility method

boolean somtCheckVisibility(in SOMTMethodEntryC entry);

Last update: 2024/09/18 15:00 en:docs:tk:som https://osfree.su/doku/doku.php?id=en:docs:tk:som&rev=1726671600

https://osfree.su/doku/ Printed on 2026/01/16 04:46

Return 1 (true) if <entry> should be visible in the current target file. This method is used by each of
the following filter methods that are concerned with visibility.

The default rule for visibility is:

only private methods are visible in private target files,
only public methods are visibile in public target files,
all methods are visibile in implementation or <somtAllE> target files.

somtNew method

boolean somtNew(in SOMTMethodEntryC entry);

Returns 1 (true) if <entry> is a method introduced by the target class and its visibility matches
<somtTargetType> (somtImplementationE matches both private and public)

somtImplemented method

boolean somtImplemented(in SOMTMethodEntryC entry);

Returns 1 (true) if <entry> is a method introduced or overridden by the target class and its visibility
matches <somtTargetType> (somtImplementationE matches both private and public)

somtOverridden method

boolean somtOverridden(in SOMTMethodEntryC entry);

Returns 1 (true) if <entry> is an overridding method of the target class and its visibility matches
<somtTargetType> (somtImplementationE matches both private and public)

somtInherited method

boolean somtInherited(in SOMTMethodEntryC entry);

Returns 1 (true) if <entry> is inherited by the target class and its visibility matches
<somtTargetType> (somtImplementationE matches both private and public)

somtAllVisible method

boolean somtAllVisible(in SOMTMethodEntryC entry);

Returns 1 (true) if <entry> is supported by the target class and its visibility matches
<somtTargetType> (somtImplementationE matches both private and public)

2026/01/16 04:46 75/101 Quick history

osFree wiki - https://osfree.su/doku/

somtAll method

boolean somtAll(in SOMTMethodEntryC entry);

Returns 1 (true) if <entry> is supported by the target class.

somtNewNoProc method

boolean somtNewNoProc(in SOMTEntryC entry);

Returns 1 (true) if somtNew does and the method IS NOT a direct call Procedure.

somtPrivOrPub method

boolean somtPrivOrPub(in SOMTEntryC entry);

Returns 1 (true) if entry is Private or Public.

somtNewProc method

boolean somtNewProc(in SOMTEntryC entry);

Returns 1 (true) if somtNew does and the method IS a direct call Procedure.

somtLink method

boolean somtLink(in SOMTEntryC entry);

Returns 1 (true) if “nolink” is not set.

somtVA method

boolean somtVA(in SOMTEntryC entry);

Returns 1 (true) if entry is a VarArgs method.

somtScanMethods method

boolean somtScanMethods(in string filter, in string prolog, in string each,
in string epilog, in boolean forceProlog);

Last update: 2024/09/18 15:00 en:docs:tk:som https://osfree.su/doku/doku.php?id=en:docs:tk:som&rev=1726671600

https://osfree.su/doku/ Printed on 2026/01/16 04:46

Will only call <each> on methods accepted by <filter>. If <forceProlog> is not true then the prolog
and epilog emiters will be called only if there is at least one method that passes the filter.

somtScanConstants method

boolean somtScanConstants(in string prolog, in string each, in string
epilog);

somtScanTypedefs method

boolean somtScanTypedefs(in string prolog, in string each, in string
epilog);

somtScanStructs method

boolean somtScanStructs(in string prolog, in string each, in string epilog);

somtScanUnions method

boolean somtScanUnions(in string prolog, in string each, in string epilog);

somtScanEnums method

boolean somtScanEnums(in string prolog, in string each, in string epilog);

somtScanData method

boolean somtScanData(in string prolog, in string each, in string epilog);

somtScanAttributes method

boolean somtScanAttributes(in string prolog, in string each, in string
epilog);

somtScanInterfaces method

boolean somtScanInterfaces(in string prolog, in string each, in string
epilog);

2026/01/16 04:46 77/101 Quick history

osFree wiki - https://osfree.su/doku/

somtScanModules method

boolean somtScanModules(in string prolog, in string each, in string epilog);

somtScanPassthru method

boolean somtScanPassthru(in boolean before, in string prolog, in string
each, in string epilog);

somtEmitFullPassthru method

void somtEmitFullPassthru(in boolean before, in string language);

Emits each passthru section defined for the language and targetType, and the result of the
somtIsBeforePassthru method is equal to the before parameter. (before = 1(true), or before =
0(false), i.e. after.)

somtScanDataF method

boolean somtScanDataF(in string filter, in string prolog, in string each, in
string epilog, in boolean forceProlog);

This method is like somtScanData but it also provides a paramater for a filter method.

somtScanBasesF method

boolean somtScanBasesF(in string filter, in string prolog, in string each,
in string epilog, in boolean forceProlog);

This method is like somtScanBases but it also provides a paramater for a filter method.

somtGetGlobalModifierValue method

string somtGetGlobalModifierValue(in string modifierName);

Returns the value of the specified global modifier.

Global modifiers are specified when the SOM Compiler is invoked, via the “-m” option. For example,

sc -m"foo=bar" file.idl

specifies to the SOM Compiler and the emitters being run that the global modifier “foo” has the value
“bar.”

Last update: 2024/09/18 15:00 en:docs:tk:som https://osfree.su/doku/doku.php?id=en:docs:tk:som&rev=1726671600

https://osfree.su/doku/ Printed on 2026/01/16 04:46

Values of global modifiers are transient; they last only for the duration of the compile for which they
were specified.

If a modifier is specified in the “sc” command with no value, as in

sc -mfoo file.idl

then the result of this method will be non-NULL.

If no such modifier is specified, then the result is NULL.

Older SOM compiler version uses “-a” option which is same as “-m” option.

somtGetFirstGlobalDefinition method

SOMTEntryC somtGetFirstGlobalDefinition();

Returns the first type or constant definition that is not associated with any interface or module.

These global definitions must be surrounded by the somemittypes pragmas for them to be visible via
this method. E.g.,

#pragma somemittypes on
....
#pragma someemittypes off

The list of global definitions returned by this method and the somtGetNextGlobalDefinition method
may include entries for forward declarations as well as typedefs and constants.

Global structs and unions are also included in the list.

somtGetNextGlobalDefinition method

SOMTEntryC somtGetNextGlobalDefinition();

Returns the next type or constant definition that is not associated with any interface or module,
relative to a previous call to somtGetFirstGlobalDefinition or somtGetNextGlobalDefinition.

SOMTEntryC Class

somtEntryName attribute

attribute string somtEntryName;

The name associated with this entry. Eg, the name of the data item, the class, the method, the type,
etc.

2026/01/16 04:46 79/101 Quick history

osFree wiki - https://osfree.su/doku/

somtElementType attribute

attribute SOMTTypes somtElementType;

Returns the type of this entry. This is not datatype, but entry type (method, class, passthru, etc.). The
value is defined by SOMTTypes.

somtElementTypeName attribute

readonly attribute string somtElementTypeName;

String version of somtElementType.

somtEntryComment attribute

readonly attribute string somtEntryComment;

Returns the comment associated with this entry, or NULL is this entry has no associated comment.
Comments will have comment delimitors removed, but will retain newline characters as specified in
the source file. (use smLookupComment)

somtSourceLineNumber attribute

readonly attribute unsigned long somtSourceLineNumber;

Returns the line number in the source file where this entry's syntactic form ended.

somtTypeCode attribute

readonly attribute TypeCode somtTypeCode;

The typecode, if appropriate, or NULL.

somtIsReference attribute

readonly attribute boolean somtIsReference;

Whether the entry is just a reference to the real type (TRUE) rather than a declaration of it (FALSE).

somtIDLScopedName attribute

Last update: 2024/09/18 15:00 en:docs:tk:som https://osfree.su/doku/doku.php?id=en:docs:tk:som&rev=1726671600

https://osfree.su/doku/ Printed on 2026/01/16 04:46

readonly attribute string somtIDLScopedName;

The IDL scoped name of the entry (using double colon as delimiter).

somtCScopedName attribute

readonly attribute string somtCScopedName;

The C scoped name of the entry (using underscore as delimiter).

somtGetModifierValue method

string somtGetModifierValue(in string modifierName);

Returns the value of the named modifier if this entry has the named modifier and NULL otherwise.
Note: if the modifier is present but does not have a value then a value of <'\1'> is returned.

somtGetFirstModifier method

boolean somtGetFirstModifier(inout string modifierName, inout string
modifierValue);

Returns the first modifier associated with this entry. 1 (true) is returned if the entry has at least one
modifier and 0 (false) otherwise.

somtGetNextModifier method

boolean somtGetNextModifier(inout string modifierName, inout string
modifierValue);

Returns the next modifier (with respect to the last call to <somtGetNextModifier> or
<somtGetFirstModifier>) associated with this entry. 1 (true) is returned if the entry had another
modifier and 0 (false) otherwise.

somtFormatModifier method

long somtFormatModifier(in string buffer, in string name, in string value);

Formats the indicated name/value pair into buffer. Buffer must be big enough to hold all the
formatted pair, no checks are made. The number of characters added to buffer are returned (not
including the trailing null character).

Note: value may be null

2026/01/16 04:46 81/101 Quick history

osFree wiki - https://osfree.su/doku/

You will probably never call this method, it is provided so that you can override it to control the format
returned in <somtGetModifierList>.

somtGetModifierList method

long somtGetModifierList(in string buffer);

The modifiers for this entry are placed in <buffer> in template list form (newline separated). Buffer
must be big enough to hold all the modifiers, no checks are made. The number of modifiers is
returned.

somtSetSymbolsOnEntry method

long somtSetSymbolsOnEntry(in SOMTEmitC emitter, in string prefix);

Places a number of symbol/value pairs in <t>. All the symbols will begin with <prefix>.

somtSetEntryStruct method

void somtSetEntryStruct(inout Entry es);

Sets the entry struct data member.

Note, when overridding this method, it is important to call the parent version of the method first and
then do your processing.

SOMTEnumEntryC Class

somtGetFirstEnumName method

SOMTEnumNameEntryC somtGetFirstEnumName();

somtGetNextEnumName method

SOMTEnumNameEntryC somtGetNextEnumName();

SOMTEnumNameEntryC Class

somtEnumPtr attribute

readonly attribute SOMTEnumEntryC somtEnumPtr;

Last update: 2024/09/18 15:00 en:docs:tk:som https://osfree.su/doku/doku.php?id=en:docs:tk:som&rev=1726671600

https://osfree.su/doku/ Printed on 2026/01/16 04:46

A pointer to the enumerator.

somtEnumVal attribute

readonly attribute unsigned long somtEnumVal;

The value of the enumeration.

SOMTMetaClassEntryC Class

somtMetaFile attribute

readonly attribute string somtMetaFile;

Returns the name of the file containing the definition of the meta class named in this entry.

somtMetaClassDef attribute

readonly attribute SOMTClassEntryC somtMetaClassDef;

Returns the class definition entry for the meta class named in this entry.

SOMTMethodEntryC Class

somtIsVarargs attribute

readonly attribute boolean somtIsVarargs;

Returns 1 (true) if this method definition has a variable length parameter list.

somtOriginalMethod attribute

readonly attribute SOMTMethodEntryC somtOriginalMethod;

If this is an override method definition (<SOMTOverrideMethodE>) then this is the method definition
entry that orginially introduced the method.

somtOriginalClass attribute

readonly attribute SOMTClassEntryC somtOriginalClass;

2026/01/16 04:46 83/101 Quick history

osFree wiki - https://osfree.su/doku/

If this is an override method definition (<SOMTOverrideMethodE>) then this is the class definition
entry that orginially introduced the method.

somtMethodGroup attribute

readonly attribute SOMTEntryC somtMethodGroup;

The group this method is defined in within a class definition.

somtIsPrivateMethod attribute

readonly attribute boolean somtIsPrivateMethod;

Whether or not the method is private.

somtIsOneway attribute

readonly attribute boolean somtIsOneway;

Whether or not the method is oneway.

somtArgCount attribute

readonly attribute short somtArgCount;

The number of arguments for the method.

somtGetFirstParameter method

SOMTParameterEntryC somtGetFirstParameter();

Returns the first formal parameter entry for this method if it has one and NULL otherwise. Note: the
target object parameter is not included, therefore the first parameter is really the second parameter
from a SOM runtime perspective.

somtGetNextParameter method

SOMTParameterEntryC somtGetNextParameter();

Returns the next formal parameter entry for this method if it has one and NULL otherwise.

Last update: 2024/09/18 15:00 en:docs:tk:som https://osfree.su/doku/doku.php?id=en:docs:tk:som&rev=1726671600

https://osfree.su/doku/ Printed on 2026/01/16 04:46

somtGetIDLParamList method

string somtGetIDLParamList(in string buffer);

Returns the formal parameter list (in IDL syntax) for this method. The parameter list is built in
<buffer> and the address of <buffer> is returned.

Parameters are delimited with newlines.

The method receiver and any implicit method arguments are NOT included.

somtGetShortCParamList method

string somtGetShortCParamList(in string buffer, in string selfParm, in
string varargsParm);

Returns the formal parameter list (in ANSI C function prototype form, with types) for this method. The
parameter list is built in <buffer> and the address of <buffer> is returned.

Parameters are delimited with newlines.

If this method takes a variable number of arguments then the final parameter substring is replaced by
<varargsParm>, unless <varargsParm> is NULL in which case the final parameter is removed.

If <selfParm> is not null then it is added as an initial parameter. (The <selfParm> string may actually
contain multiple parameters, delimited by newline characters.)

The method receiver and any implicit method arguments are NOT included.

The types of the method parameters are given in C form (with pointer stars, where needed) rather
than in the IDL form.

somtGetFullCParamList method

string somtGetFullCParamList(in string buffer, in string varargsParm);

Same as somtGetShortCParamList except that the method receiver and any implicit method
arguments (Environment and Context) are included. The types of the method parameters are given in
C form (with pointer stars, where needed) rather than in the IDL form.

somtGetShortParamNameList mwthod

string somtGetShortParamNameList(in string buffer, in string selfParm, in
string varargsParm);

Returns the parameter list for this method in call form (without types). The argument list is built in
<buffer> and the address of <buffer> is returned. Parameters are delimited with newlines.

2026/01/16 04:46 85/101 Quick history

osFree wiki - https://osfree.su/doku/

If this method takes a variable number of arguments then the final parameter is replaced by
<varargsParm>, unless <varargsParm> is NULL in which case the final parameter is removed.

If <selfParm> is not null then it is added as an initial parameter. (The <selfParm> string may actually
contain multiple parameters, delimited by newline characters.)

The method receiver and any implicit method arguments are NOT included.

somtGetFullParamNameList method

string somtGetFullParamNameList(in string buffer, in string varargsParm);

Same as somtGetParamNameList except that the method receiver and any implicit method
arguments (Environment and Context) are included.

somtGetNthParameter mwthod

SOMTParameterEntryC somtGetNthParameter(in short n);

Returns the object representing the nth explicit method parameter.

somtGetFirstException method

SOMTStructEntryC somtGetFirstException();

The first exception this method raises.

somtGetNextException method

SOMTStructEntryC somtGetNextException();

The next exception this method raises, relative to the previous call to this method or to
somtGetFirstException.

somtContextArray attribute

readonly attribute string *somtContextArray;

An array of the context string-literals for the method.

somtCReturnType attribute

Last update: 2024/09/18 15:00 en:docs:tk:som https://osfree.su/doku/doku.php?id=en:docs:tk:som&rev=1726671600

https://osfree.su/doku/ Printed on 2026/01/16 04:46

readonly attribute string somtCReturnType;

The C datatype the method returns. This may not correspond to the IDL data type (in particular,
pointer stars may be added).

SOMTModuleEntryC Class

somtOuterModule attribute

readonly attribute SOMTModuleEntryC somtOuterModule;

The module enclosing this module, or NULL if there is none.

somtModuleFile attribute

readonly attribute string somtModuleFile;

The name of the file in which the module appears.

somtGetFirstModuleStruct method

SOMTStructEntryC somtGetFirstModuleStruct();

somtGetNextModuleStruct method

SOMTStructEntryC somtGetNextModuleStruct();

somtGetFirstModuleTypedef method

SOMTTypedefEntryC somtGetFirstModuleTypedef();

somtGetNextModuleTypedef method

SOMTTypedefEntryC somtGetNextModuleTypedef();

somtGetFirstModuleUnion method

SOMTUnionEntryC somtGetFirstModuleUnion();

2026/01/16 04:46 87/101 Quick history

osFree wiki - https://osfree.su/doku/

somtGetNextModuleUnion method

SOMTUnionEntryC somtGetNextModuleUnion();

somtGetFirstModuleEnum method

SOMTEnumEntryC somtGetFirstModuleEnum();

somtGetNextModuleEnum method

SOMTEnumEntryC somtGetNextModuleEnum();

somtGetFirstModuleConstant mwthod

SOMTConstEntryC somtGetFirstModuleConstant();

somtGetNextModuleConstant mwthod

SOMTConstEntryC somtGetNextModuleConstant();

somtGetFirstModuleSequence method

SOMTSequenceEntryC somtGetFirstModuleSequence();

somtGetNextModuleSequence method

SOMTSequenceEntryC somtGetNextModuleSequence();

somtGetFirstInterface method

SOMTClassEntryC somtGetFirstInterface();

somtGetNextInterface method

SOMTClassEntryC somtGetNextInterface();

somtGetFirstModule method

Last update: 2024/09/18 15:00 en:docs:tk:som https://osfree.su/doku/doku.php?id=en:docs:tk:som&rev=1726671600

https://osfree.su/doku/ Printed on 2026/01/16 04:46

SOMTModuleEntryC somtGetFirstModule();

somtGetNextModule method

SOMTModuleEntryC somtGetNextModule();

somtGetFirstModuleDef method

SOMTEntryC somtGetFirstModuleDef();

somtGetNextModuleDef method

SOMTEntryC somtGetNextModuleDef();

SOMTParameterEntryC Class

somtParameterDirection attribute

readonly attribute somtParameterDirectionT somtParameterDirection;

The direction for this parameter. (somtInE, somtOutE, or somtInOutE).

somtIDLParameterDeclaration attribute

readonly attribute string somtIDLParameterDeclaration;

The IDL declaration of the parameter, including the type and name.

somtCParameterDeclaration attribute

readonly attribute string somtCParameterDeclaration;

The declaration for the parameter within a C method procedure prototype. It includes the parameter's
type and name. This may differ from the parameter's IDL declaration. In particular, pointer stars may
be added.

somtPascalParameterDeclaration attribute

readonly attribute string somtPascalParameterDeclaration;

2026/01/16 04:46 89/101 Quick history

osFree wiki - https://osfree.su/doku/

The declaration for the parameter within a Pascal method procedure prototype. It includes the
parameter's type and name. This may differ from the parameter's IDL declaration. In particular,
pointer stars may be added.

SOMTPassthruEntryC Class

somtPassthruBody attribute

readonly attribute string somtPassthruBody;

The source content text of this passthru entry without any modification. Newlines that were present in
the source will still be present.

somtPassthruLanguage attribute

readonly attribute string somtPassthruLanguage;

Returns the name of the language for which this passthru entry is intended. Language names are
always all upper case.

somtPassthruTarget attribute

readonly attribute string somtPassthruTarget;

Returns the target for this passthru entry.

somtIsBeforePassthru method

boolean somtIsBeforePassthru();

Returns 1 (true) if this passthru entry is to be put at the beginning of the file or 0 (false) if this
passthru entry is to go later in the file.

SOMTSequenceEntryC Class

somtSeqLength attribute

readonly attribute long somtSeqLength;

The length of the sequence.

Last update: 2024/09/18 15:00 en:docs:tk:som https://osfree.su/doku/doku.php?id=en:docs:tk:som&rev=1726671600

https://osfree.su/doku/ Printed on 2026/01/16 04:46

somtSeqType attribute

readonly attribute SOMTEntryC somtSeqType;

The type of the sequence.

SOMTStringEntryC Class

somtStringLength attribute

readonly attribute long somtStringLength;

The length of the string.

SOMTStructEntryC Class

somtGetFirstMember Method

SOMTTypedefEntryC somtGetFirstMember();

The first member of the struct.

somtGetNextMember Method

SOMTTypedefEntryC somtGetNextMember();

The next member of the struct, relative to the previous call to this method or somtGetFirstMember.

somtStructClass method

readonly attribute SOMTClassEntryC somtStructClass;

The class in which the structure was defined.

somtIsException method

readonly attribute boolean somtIsException;

Whether the structure is really an exception.

2026/01/16 04:46 91/101 Quick history

osFree wiki - https://osfree.su/doku/

SOMTTemplateOutputC Class

somtAddSectionDefinitions Method

void somtAddSectionDefinitions(in string defString);

Add section definitions from <defString> buffer to Symbol table.

somtCommentStyle attribute

attribute somtCommentStyleT somtCommentStyle;

Set style of output comment. Supported styles are:

somtDashesE: “–” at the start of each line
somtCPPE: C++ style, "//" at the start of each line
somtCSimpleE: simple C style, each line wrapped in /* and */
somtCBlockE: block C style, block style, ie leading /* then a * on each line and then a final */
somtPSimpleE: simple Pascal style, each line wrapped in (* and *)
somtPBlockE: block Pascal style, block style, ie leading (* then a * on each line and then a final
*)
somtPBorlandE: block Borland Pascal style, block style, ie leading { and then a final }

somtLineLength attribute

attribute long somtLineLength;

Line length limit. At least on list item will be output.

somtCommentNewline attribute

attribute boolean somtCommentNewline;

Output comment block from new line flag.

somtCheckSymbol Method

boolean somtCheckSymbol(in string name);

Return TRUE id symbol <name> exists in Symbol Table.

Last update: 2024/09/18 15:00 en:docs:tk:som https://osfree.su/doku/doku.php?id=en:docs:tk:som&rev=1726671600

https://osfree.su/doku/ Printed on 2026/01/16 04:46

somtExpandSymbol Method

string somtExpandSymbol(in string s, in string buf);

somtGetSymbol Method

string somtGetSymbol(in string name);

Return symbol value for <name> from Symbol table.

somto Method

void somto(in string tmplt);

Outputs a template, <tmplt>, after substitution for any symbols that occur in it. Five substitutions are
supported: simple, list, comment, tab, and conditional.

Substitutable items in the template are bracketed with angle brackets. (Backslash can be used to
escape an angle bracket.)

Simple substitutions just replace a symbol with its value. If the symbol has no value in this template
object then the symbol is replaced error string but no error is raised.

List substitution assumes that the symbol has a value in output template list form. This is a newline
separated string of values. The list substitution specification consists of four parts, a prefix, a symbol,
a separator, and a list indicator. prefixes and separators can only be composed of blanks, comma,
colons, and semi-colons. The list indicator is “…” (three periods). For example, the list substitution
specification “<, name, …> has a prefix of ”, “, a symbol of “name” and a separator of ”, “. The prefix
will be used whenever there is at least one item in the list and the separator will be used between any
two list items. After the first items of a list is placed each additional item is evaluated to see if it would
begin after the line length limit (set by _set_somtLineLength), if it would then a new line is begun and
the value is placed directly under the first item. Comment substitution assumes that the symbol has a
value in output template list form. A comment specification consists of a comment indicator followed
by a symbol name. The comment indicator is ”–“. Eg, <-- classComment> is a valid comment
substitution specification. The lines of the comment are output according to the current comment
style (see <somtCommentStyle>) and aligned with the starting column of the comment specification.
Tab substitution is specified by <@dd> where “dd” is a valid positive integer. Blanks will be inserted
into the output stream if necessary to position the next character of output at the column indicated
by “dd”.

Conditional substitution is specified by putting a question mark, ”?“, in column one of the template
line. The line will not be output at all unless at least one valid, non-blank, symbol substitution occurs
on the line.

Note: Due design error in IBM SOM 3.0 this method can't be fully replaced. You can do some
preprocessing of <templ> and call parent method. This is due direct usage of FILE structure in somto
method. This means you can't write to file using standard C file functions because FILE structure is a
compiler depended. But you don't know which compiler was used for. Header files contains compiler-

2026/01/16 04:46 93/101 Quick history

osFree wiki - https://osfree.su/doku/

independed file functions (somtok*), but no any of this functions, except two ones, exported in SOM
DLLs. So, if you want to fully replace this method then you need also replace lot of other methods and
functions of Emitter Framework and SOM Compiler library. For IBM SOM 2.1 all seems to be ok, but
you must use somtok* functions from SOMC.DLL, not standard C runtime for file operations.

somtOutputComment Method

void somtOutputComment(in string comment);

Outputs comment using comment style settings.

Note: Due design error in IBM SOM 3.0 this method can't be fully replaced. You can do some
preprocessing of <comment> and call parent or somto method. This is due direct usage of FILE
structure in somto method. This means you can't write to file using standard C file functions because
FILE structure is a compiler depended. But you don't know which compiler was used for. Header files
contains compiler-independed file functions (somtok*), but no any of this functions, except two ones,
exported in SOM DLLs. So, if you want to fully replace this method then you need also replace lot of
other methods and functions of Emitter Framework and SOM Compiler library. For IBM SOM 2.1 all
seems to be ok, but you must use somtok* functions from SOMC.DLL, not standard C runtime for file
operations.

somtOutputSection Method

void somtOutputSection(in string sectionName);

Same as somto method, but template read from Symbol table with key equal to sectionName. Uses
somto method for actual output.

somtReadSectionDefinitions Method

void somtReadSectionDefinitions(inout FILE fp);

This method reads sections from template file and stores them in Symbol table. fp is a value returned
by somtOpenSymbolsFile method of SOMTEmitC class.

Note: Due design error in IBM SOM 3.0 this method can't be replaced. This is due unknown structure
of FILE type. This means you can't read file using standard C file functions because FILE structure is a
compiler depended. But you don't know which compiler was used for. Header files contains compiler-
independed file functions (somtok*), but no any of this functions, except two ones, exported in SOM
DLLs. So, if you want to fully replace this method then you need also replace lot of other methods and
functions of Emitter Framework and SOM Compiler library. For IBM SOM 2.1 all seems to be ok, but
you must use somtok* functions from SOMC.DLL, not standard C runtime for file operations.

somtSetOutputFile Method

Last update: 2024/09/18 15:00 en:docs:tk:som https://osfree.su/doku/doku.php?id=en:docs:tk:som&rev=1726671600

https://osfree.su/doku/ Printed on 2026/01/16 04:46

void somtSetOutputFile(inout FILE fp);

Pass FILE structure to object to use for file I/O. fp is a value returned by somtOpenEmitFile or
somtOpenEmitFileSL.

Note: FILE structure must be same as in other I/O methods and functions.

somtSetSymbol Method

void somtSetSymbol(in string name, in string value);

Set symbol name in Symbol table to value. name and value must be allocated using SOMMaloc
function. It will be deallocated using SOMFree on object destroying.

somtSetSymbolCopyBoth Method

void somtSetSymbolCopyBoth(in string name, in string value);

Same as somtSetSymbol but name and value will be copied to internally allocated buffer.

somtSetSymbolCopyName Method

void somtSetSymbolCopyName(in string name, in string value);

Same as somtSetSymbol but name will be copied to internally allocated buffer.

somtSetSymbolCopyValue Method

void somtSetSymbolCopyValue(in string name, in string value);

Same as somtSetSymbol but value will be copied to internally allocated buffer.

SOMTTypedefEntryC Class

somtTypedefType attribute

readonly attribute SOMTEntryC somtTypedefType;

The type of the typedef. This does not include pointer stars or array declarators. These must be
obtained by examining each of the declarators.

2026/01/16 04:46 95/101 Quick history

osFree wiki - https://osfree.su/doku/

somtGetFirstDeclarator method

SOMTCommonEntryC somtGetFirstDeclarator();

The first declarator for this typedef. Declarators of struct members will be instances of
SOMTDataEntryC, while declarators of typedefs will be instances of SOMTUserDefinedTypeEntryC.

somtGetNextDeclarator method

SOMTCommonEntryC somtGetNextDeclarator();

The next declarator for this typedef, relative to the previous call to this method or
somtGetFirstDeclarator. Declarators of struct members will be instances of SOMTDataEntryC, while
declarators of typedefs will be instances of SOMTUserDefinedTypeEntryC.

SOMTUnionEntryC Class

somtSwitchType attribute

readonly attribute SOMTEntryC somtSwitchType;

The switch type of the union.

somtGetFirstCaseEntry method

somtCaseEntry *somtGetFirstCaseEntry();

The first case for the union.

somtGetNextCaseEntry method

somtCaseEntry *somtGetNextCaseEntry();

The next case for the union, relative to the previous call to this method or to somtGetFirstCaseEntry.

SOMTUserDefinedTypeEntryC Class

somtOriginalTypedef attribute

readonly attribute SOMTTypedefEntryC somtOriginalTypedef;

The typedef that defined the user-defined type.

Last update: 2024/09/18 15:00 en:docs:tk:som https://osfree.su/doku/doku.php?id=en:docs:tk:som&rev=1726671600

https://osfree.su/doku/ Printed on 2026/01/16 04:46

somtBaseTypeObj attribute

readonly attribute SOMTEntryC somtBaseTypeObj;

The object representing the base type (eg. short, float, unsigned long) of a user-defined type, skipping
over any intermediate user-defined types.

SOMStringTableC Class

interface SOMStringTableC : SOMObject

Объектами класса SOMStringTableC являются символьные таблицы, которые отображают
строки на строки (ключ-значение, ассоциативные массивы). Любой экземпляр класса может
хранить неограниченное число элементов. При увеличении количества строк время поиска
строки увеличивается. В отличие от IBM SOM в данной реализации не используются хэш-
таблицы.

somstTargetCapacity attribute

attribute unsigned long somstTargetCapacity;

Емкость ассоциативного массива. Значение не влияет на работу и сохранено для
совместимости. В IBM SOM данный атрибут определял размер хэш-таблицы. Данный атрибут
должен выставляться до вызова любого из методов данного класса

somstAssociationsCount attribute

readonly attribute unsigned long somstAssociationsCount;

Текущее число ассоциаций в массиве

somstAssociate method

short somstAssociate(in string key, in string value);

Устанавливает связь <key> и <value>. Возвращает 0, если связь не может быть установлена
(<key> нулевой или недостаточно памяти); -1 - ассоциация успешна выполнена, но <key> уже
имел значение до вызова метода, 1 - ассоциация успешно выполнена и <key> не существовал.
Замечание: массив сохраняет ссылки на <key> и <value>, передаваемые в аргументах. Копия
значений <key> и <value> не создается. При уничтожении объекта память, занимаемая <key>
и <value> освобождается с помощью SOMFree, т.е. память под <key> и <value> должна быть
выделена с помощью SOMMalloc и аналогичных функций. Замечание: При замене <value> при
имеющемся <key> старое <value> заменаяется, память не освобождается

2026/01/16 04:46 97/101 Quick history

osFree wiki - https://osfree.su/doku/

somstAssociateCopyKey method

short somstAssociateCopyKey(in string key, in string value);

То же, что и <somstAssociate>, но массив содержит копии значений <key>. Значение <key>
копируется в выделяемую с помощью SOMMalloc память.

somstAssociateCopyValue method

short somstAssociateCopyValue(in string key, in string value);

То же, что и <somstAssociate>, но массив содержит копии значений <value>. Значение
<value> копируется в выделяемую с помощью SOMMalloc память.

somstAssociateCopyBoth method

short somstAssociateCopyBoth(in string key, in string value);

То же, что и <somstAssociate>, но массив содержит копии значений <key> и <value>.
Значения <key> и <value> копируются в выделяемую с помощью SOMMalloc память.

somstGetAssociation method

string somstGetAssociation(in string key);

Возвращается строка, ассоциированная с <key>, или NULL, если нет ассоциации. Массив
продолжает хранить указатель на значение.

somstClearAssociation method

boolean somstClearAssociation(in string key);

The association for <key>, if any, is removed.1 is returned if <key> had an association, and 0 is
returned if it did not.

somstGetIthKey method

string somstGetIthKey(in unsigned long i);

Возвращает ключевую часть <i>-й по счету ассоциации. Если нет ассоциации, то возвращает
NULL. Порядок ассоциации в массиве не определен, но остается постоянным до следующей
модификации.

Last update: 2024/09/18 15:00 en:docs:tk:som https://osfree.su/doku/doku.php?id=en:docs:tk:som&rev=1726671600

https://osfree.su/doku/ Printed on 2026/01/16 04:46

somstGetIthValue method

string somstGetIthValue(in unsigned long i);

Возвращает значимую часть <i>-й по счету ассоциации. Если нет ассоциации, то возвращает
NULL. Порядок ассоциации в массиве не определен, но остается постоянным до следующей
модификации.

somtStrDup function

SOMEXTERN char * SOMLINK somtStrDup(char *str);

Allocate memory and duplicate string str

somtEntryTypeName function

SOMEXTERN char * SOMLINK somtEntryTypeName(SOMTTypes type);

Return string representation of type of Entry structure except special case SOMTEmitterBeginE and
SOMTEmitterEndE types.

somtShowEntry function

SOMEXTERN void SOMLINK somtShowEntry(Entry * ep);

Output using somPrintf information about Entry structure.

somtStrCat function

SOMEXTERN char * SOMLINK somtStrCat(int count,...);

Concatenate count of strings.

somtMakeIncludeStr function

SOMEXTERN char * SOMLINK somtMakeIncludeStr(boolean local, char *stem, char
*suffix);

Produce include string for local (include ”“) or global (include <>) using file stem as file name and
suffix as file extension.

2026/01/16 04:46 99/101 Quick history

osFree wiki - https://osfree.su/doku/

somtNewSymbol function

SOMEXTERN char * SOMLINK somtNewSymbol(char *prefix, char *stem);

Allocate memory and produce string from prefix and stem.

somtGetFileStem function

SOMEXTERN char * SOMLINK somtGetFileStem(char *fullName);

Allocate memory and return file stem from file name.

somtGetObjectWrapper function

SOMEXTERN SOMTEntryC * SOMLINK somtGetObjectWrapper(Entry * ep);

Return SOMT*EntryC object for ep Entry structure.

Mapping of Entry types to SOMT*EntryC classes:

Entry type Emitter Framework Class
SOMTArgumentE SOMTParameterEntryC
SOMTAttE SOMTAttributeEntryC
SOMTBadEntryE Fatal error
SOMTBaseE SOMTBaseClassEntryC
SOMTClassE SOMTClassEntryC
SOMTConstE SOMTConstEntryC
SOMTDataE SOMTDataEntryC
SOMTEnumBE SOMTEnumNameEntryC
SOMTEnumE SOMTEnumEntryC
SOMTEnumPE SOMTEnumEntryC
SOMTFloatBE SOMTEntryC
SOMTAnyBE SOMTEntryC
SOMTGroupE SOMTEntryC
SOMTCopyrightE SOMTEntryC
SOMTLongBE SOMTEntryC
SOMTNegativeBE SOMTEntryC
SOMTOctetBE SOMTEntryC
SOMTTypeCodeBE SOMTEntryC
SOMTBooleanBE SOMTEntryC
SOMTCaseEntryE SOMTEntryC
SOMTCaseListE SOMTEntryC
SOMTCaseSTME SOMTEntryC
SOMTCharBE SOMTEntryC
SOMTDclListE SOMTEntryC

Last update: 2024/09/18 15:00 en:docs:tk:som https://osfree.su/doku/doku.php?id=en:docs:tk:som&rev=1726671600

https://osfree.su/doku/ Printed on 2026/01/16 04:46

Entry type Emitter Framework Class
SOMTDefaultE SOMTEntryC
SOMTDoubleBE SOMTEntryC
SOMTEBaseE SOMTEntryC
SOMTEEnumE SOMTEntryC
SOMTShortBE SOMTEntryC
SOMTStringBE SOMTEntryC
SOMTUnsignedLongBE SOMTEntryC
SOMTUnsignedShortBE SOMTEntryC
SOMTVoidBE SOMTEntryC
SOMTVoidPtrBE SOMTEntryC
SOMTMetaE SOMTMetaClassEntryC
SOMTModuleE SOMTModuleEntryC
SOMTNewMethodE SOMTMethodEntryC
SOMTOverriddenMethodE SOMTMethodEntryC
SOMTOverrideMethodE SOMTMethodEntryC
SOMTPassthruE SOMTPassthruEntryC
SOMTSequenceE SOMTSequenceEntryC
SOMTSequenceTDE SOMTSequenceEntryC
SOMTStringE SOMTStringEntryC
SOMTStructE SOMTStructEntryC
SOMTStructPE SOMTStructEntryC
SOMTStructSE SOMTStructEntryC
SOMTTyDclE SOMTTypedefEntryC
SOMTTypedefE SOMTTypedefEntryC
SOMTTypedefBE SOMTUserDefinedTypeEntryC
SOMTUnionE SOMTUnionEntryC
SOMTUnionPE SOMTUnionEntryC
SOMTUnionSE SOMTUnionEntryC
SOMTEmitterBeginE Fatal error
SOMTEmitterEndE Fatal error

Appendixes

1. Appendix 1. SOM ABI

Due switching from MSVC (IBM SOM 2.1) to VAC (IBM SOM 3.0) some problems was occur:

First problem is a calling convention. All non SOMLINK calls in IBM SOM 2.1 is a _cdecl calls. But under
IBM SOM 3.0 all non SOMLINK calls is a Optlink calls. Read some info here:
https://github.com/prokushev/SOM-Delphi-Wiki/blob/master/Known%20differences%20between%20SO
M%202.1%20and%20SOM%203.0.md Goal of somFree SOM Compiler and Emitter Framework is to
provide a possibility to use original IBM SOM emitters as from IBM SOM 2.1 as from IBM SOM 3.0.
Another goal is a development of somFree emitters, which can be used on both IBM SOM 2.1 and IBM
SOM 3.0 compilers.To achieve above goals somFree provides some solutions: 1. Automatic somc.dll

https://github.com/prokushev/SOM-Delphi-Wiki/blob/master/Known%20differences%20between%20SOM%202.1%20and%20SOM%203.0.md
https://github.com/prokushev/SOM-Delphi-Wiki/blob/master/Known%20differences%20between%20SOM%202.1%20and%20SOM%203.0.md

2026/01/16 04:46 101/101 Quick history

osFree wiki - https://osfree.su/doku/

calling convention switching. somFree SOMC.DLL provides automatic switching of IBM SOM 2.1 ABI
and IBM SOM 3.0 ABI. Switching occurs on somtload call during loading of emitter. For IBM SOM 3.0 all
emitter contains entry point emitSL, so, if loading was success, then somFree handles Optlink calling
convention for all non SOMLINK calls. If no such entry (found only emit) then IBM SOM 2.1 ABI used. 2.
Support both entry points (emitSL and emit) in emitters. somFree emitters automatically switches to
IBM SOM 2.1 ABI on emit call and to IBM SOM 3.0 ABI on emitSL call.

Список литературы

Object Management Group, «C Language Mapping Specification 1.0,» [В Интернете]. Available:1.
https://www.omg.org/spec/C/. [Дата обращения: 24 Август 2022].
IBM, OS/2 2.0 Technical Library. System Object Model Guide and Reference. First Edition., 1991.2.
https://www.os2museum.com/files/docs/os220tl/os2-2.0-som-1991.pdf

From:
https://osfree.su/doku/ - osFree wiki

Permanent link:
https://osfree.su/doku/doku.php?id=en:docs:tk:som&rev=1726671600

Last update: 2024/09/18 15:00

https://www.omg.org/spec/C/
https://www.os2museum.com/files/docs/os220tl/os2-2.0-som-1991.pdf
https://osfree.su/doku/
https://osfree.su/doku/doku.php?id=en:docs:tk:som&rev=1726671600

	somFree Compiler and Emitter Framework
	User's Guide
	Introduction
	Changes
	somFree Compiler
	SOM Interface Definition Language
	SOM Object Interface Definition Language
	Include section
	Class section
	Release order section
	Parent class section
	Passthru section
	Metaclass section
	Data section
	Methods section

	Programmer's Guide
	Introduction
	Structure of SOM Compiler and Emitter Framwork
	Interaction of SOM Compiler components
	Template faculty
	Generic Emitter
	DEF Emitter
	LNK Emitter
	CSC, PSC, SC Emitters
	IDL, PDL Emitters
	Developing new emitter
	CORBA C Language mapping
	SOM C Language mapping

	Programmer's reference
	SOM Runtime C library
	somFree Compiler library
	somtfexists, somtfexistsSL function
	somtsearchFile, somtsearchFileSL function
	somttraverseParents, somttraverseParentsSL function
	somtloadSL function
	somtfindBaseEp, somtfindBaseEpSL function
	somtgetType, somtgetTypeSL function
	somtokfopen, somtokfopenSL function
	somtokrename, somtokrenameSL function
	somtopenEmitFile, somtopenEmitFileSL function
	somtisDbcs, somtisDbcsSL function
	somtremoveExt, somtremoveExtSL function
	somtaddExt, somtaddExtSL function
	somtarrayToPtr, somtarrayToPtrSL function
	somtattNormalise, somtattNormaliseSL function
	somtbasename, somtbasenameSL function
	somtctos, somtctosSL function
	somtdbcsPostincr, somtdbcsPostincrSL function
	somtdbcsPreincr, somtdbcsPreincrSL function
	somtdbcsStrchr, somtdbcsStrchrSL function
	somtdbcsStrrchr, somtdbcsStrrchrsL function
	somtdbcsStrstr, somtdbcsStrstrSL function
	somteptotype, somteptotypeSL function
	somtgetDesc, somtgetDescSL function
	somtgetVersion, somtgetVersionSL function
	somtgetgatt, somtgetgattSL function
	somtnextword, somtnextwordSL function
	somtnormaliseDesc, somtnormaliseDescSL function
	somtsatos, somtsatosSL function
	somtsearchFile, somtsearchFileSL function
	somtskipws, somtskipwsSL function
	somtstringFmt, somtstringFmtSL function
	somttype, somttypeSL function
	somtuniqFmt, somtuniqFmtSL function
	somtargFlag, somtargFlagSL function
	somtattjoin, somtattjoinSL function
	somtdbcsLastChar, somtdbcsLastCharSL function
	somtdbcsScan, somtdbcsScanSL function
	somtdiskFull, somtdiskFullSL function
	somtfclose, somtfcloseSL function
	somtisparent, somtisparentSL function
	somtmget, somtmgetSL function
	somtmopen, somtmopenSL function
	somtmprintf, somtmprintfSL function
	somtokremove, somtokremoveSL function
	somtunload, somtunloadSL function
	somtwriteaccess, somtwriteaccessSL function
	somtsmalloc, somtsmallocSL function
	somtaddGAtt, somtaddGAttSL function
	somtcalcFileName, somtcalcFileNameSL function
	somtcleanFilesFatal, somtcleanFilesFatalSL function
	somtemitTypes, somtemitTypesSL function
	somterror, somterrorSL function
	somtfatal, somtfatalSL function
	somtinternal, somtinternalSL function
	somtmclose, somtmcloseSL function
	somtmsg, somtmsgSL function
	somtreadDescFile, somtreadDescFileSL function
	somtsetDefaultDesc, somtsetDefaultDescSL function
	somtsetEmitSignals, somtsetEmitSignalsSL function
	somtsetTypeDefn, somtsetTypeDefnSL function
	somtshowVersion, somtshowVersionSL function
	somtsmfree, somtsmfreeSL function
	somtunsetEmitSignals, somtunsetEmitSignalsSL function
	somtwarn, somtwarnSL function
	somtuppercase, somtuppercaseSL function
	somtlowercase, somtlowercaseSL function
	somtdbcsuppercase, somtdbcsuppercaseSL function
	somtdbcslowercase, somtdbcslowercaseSL function
	somtresetEmitSignals, somtresetEmitSignalsSL function
	somtsizeofEntry, somtsizeofEntrySL function
	somtepname, somtepnameSL function
	somtgenSeqName, somtgenSeqNameSL function
	somtmrifatal, somtmrifatalSL function
	somtmriinternal, somtmriinternalSL function
	somtmrierror, somtmrierrorSL function
	somtmrimsg, somtmrimsgSL function
	somtmriwarn, somtmriwarnSL function
	somtsetInternalMessages, somtsetInternalMessagesSL function
	somtisvoid, somtisvoidSL function
	somtreturnsStruct, somtreturnsStructSL function
	somtreturnsPtr, somtreturnsPtrSL function
	somtsimpleName, somtsimpleNameSL function
	somtqualifyNames, somtqualifyNamesSL function
	somtfindBaseEpNonPtr, somtfindBaseEpNonPtrSL function
	somtprocessTraps, somtprocessTrapsSL function
	somtallocMlist, somtallocMlistSL function
	somtmlistend, somtmlistendSL function
	somtisMutRef, somtisMutRefSL function
	somtfreeMlist, somtfreeMlistSL function
	somtdupMlist, somtdupMlistSL function
	somtfreeWorld, somtfreeWorldSL function
	somtinitMalloc, somtinitMallocSL function
	somtInitialiseEmitlib. somtInitialiseEmitlibSL function
	somtInitialiseSmmeta, somtInitialiseSmmetaSL function
	somtInitialiseCreatetc, somtInitialiseCreatetcSL function
	somtInitialiseSmtypes, somtInitialiseSmtypesSL function
	somtInitialiseSomc, somtInitialiseSomcSL function
	somtInitialiseSmsmall, somtInitialiseSmsmallSL function
	somtattMap, somtattMapSL function
	somtexit, somtexitSL function
	somtdymain, somtdymainSL function
	somtaddHeader, somtaddHeaderSL function
	somtnthArg, somtnthArgSL function
	somtemitModule, somtemitModuleSL function
	somtallocDataList, somtallocDataListSL function
	somtallocMethodList, somtallocMethodListSL function
	somtclsfilename, somtclsfilenameSL function
	somtclsname, somtclsnameSL function
	somtfindMethodName, somtfindMethodNameSL function
	somtfullPrototype, somtfullPrototypeSL function
	somtfullTypedef, somtfullTypedefSL function
	somtgetNonRepeatedParent, somtgetNonRepeatedParentSL function
	somtgetatt, somtgetattSL function
	somtgetdatt, somtgetdattSL function
	somtgetAbistyle, somtgetAbistyleSL function
	somtimplicit, somtimplicitSL function
	somtimplicitArgs, somtimplicitArgsSL function
	somtincludeOnce, somtincludeOnceSL function
	somtpclsfilename, somtpclsfilenameSL function
	somtpclsname, somtpclsnameSL function
	somtprefixedPrototype, somtprefixedPrototypeSL function
	somtreplaceDataName, somtreplaceDataNameSL function
	somtrmSelf, somtrmSelfSL function
	somtshortArgList, somtshortArgListSL function
	somtimplicitMeta, somtimplicitMetaSL function
	somtlistAttribute, somtlistAttributeSL function
	somtnewMethodsCount, somtnewMethodsCountSL function
	somtprivateMethodsCount, somtprivateMethodsCountSL function
	somtaddHeader, somtaddHeaderSL function
	somtcleanFiles, somtcleanFilesSL function
	somtdeclareIdlVarargs, somtdeclareIdlVarargsSL function
	somtdymain. somtdymainSL function
	somtemitModuleTypes, somtemitModuleTypesSL function
	somtemitPassthru, somtemitPassthruSL function
	somtfreeDataList, somtfreeDataListSL function
	somtfreeMethodList, somtfreeMethodListSL function
	somtfullComment, somtfullCommentSL function
	somthandleDiskFull, somthandleDiskFullSL function
	somtinitialiseMeta, somtinitialiseMetaSL function
	somtoidlComment, somtoidlCommentSL function
	somtscmsg, somtscmsgSL function
	somtshortDefine, somtshortDefineSL function
	somtuninitialiseMeta, somtuninitialiseMetaSL function
	somtobseleteHeaderFile, somtobseleteHeaderFileSL function
	somtwidenType, somtwidenTypeSL function
	somtgenAttStubs, somtgenAttStubsSL function
	somtstrictidl, somtstrictidlSL function
	somtcreateTypeCodes, somtcreateTypeCodesSL function
	somtemitTcConstant, somtemitTcConstantSL function
	somtemitPredefinedTcConstants, somtemitPredefinedTcConstantsSL function
	somtAncestorClass, somtAncestorClassSL function
	somttcAlignment, somttcAlignmentSL function
	somttcSize, somttcSizeSL function
	somttcKind, somttcKindSL function
	somttcSeqFromListString, somttcSeqFromListStringSL function
	somtGetReintroducedMethods, somtGetReintroducedMethodsSL function

	Symbol table support functions
	somtallocBuf, somtallocBufSL function
	somtuniqString, somtuniqStringSL function
	somtkeyword, somtkeywordSL function
	somtaddEntry, somtaddEntrySL function
	somtgetEntry, somtgetEntrySL function
	somtstabFirst, somtstabFirstSL function
	somtstabNext, somtstabNextSL function
	somtstabFirstName, somtstabFirstNameSL function
	somtstabNextName, somtstabNextNameSL function
	somtcreateMemBuf, somtcreateMemBufSL function
	somtcreateStab, somtcreateStabSL function
	somticstrcmp, somticstrcmpSL function
	somtaddEntryBuf, somtaddEntryBufSL function
	somtfreeStab, somtfreeStabSL function
	3. somFree Emitter Framework
	SOMTAttributeEntryC Class
	somtIsReadonly attribute
	somtAttribType attribute
	somtGetFirstAttributeDeclarator method
	somtGetNextAttributeDeclarator method
	somtGetFirstGetMethod method
	somtGetNextGetMethod method
	somtGetFirstSetMethod method
	somtGetNextSetMethod method

	SOMTBaseClassEntryC Class
	somtBaseClassDef attribute

	SOMTClassEntryC Class
	somtSourceFileName attribute
	somtMetaClassEntry attribute
	somtClassModule attribute
	somtNewMethodCount attribute
	somtLocalInclude attribute
	somtPrivateMethodCount attribute
	somtStaticMethodCount attribute
	somtOverrideMethodCount attribute
	somtProcMethodCount attribute
	somtVAMethodCount attribute
	somtBaseCount attribute
	somtExternalDataCount attribute
	somtPublicDataCount attribute
	somtPrivateDataCount attribute
	somtMetaclassFor attribute
	somtForwardRef attribute
	somtGetFirstBaseClass method
	somtGetNextBaseClass method
	somtGetFirstReleaseName method
	somtGetNextReleaseName method
	somtGetReleaseNameList method
	somtGetFirstPassthru method
	somtGetNextPassthru method
	somtGetFirstData method
	somtGetNextData method
	somtGetFirstStaticData method
	somtGetNextStaticData method
	somtGetFirstMethod method
	somtGetNextMethod method
	somtGetFirstInheritedMethod method
	somtGetNextInheritedMethod method
	somtGetFirstAttribute method
	somtGetNextAttribute method
	somtGetFirstStruct method
	somtGetNextStruct method
	somtGetFirstTypedef method
	somtGetNextTypedef method
	somtGetFirstUnion method
	somtGetNextUnion method
	somtGetFirstEnum method
	somtGetNextEnum method
	somtGetFirstConstant method
	somtGetNextConstant method
	somtGetFirstSequence method
	somtGetNextSequence method
	somtGetFirstPubdef method
	somtGetNextPubdef method
	somtFilterNew method
	somtFilterOverridden method
	somtFilterPrivOrPub method

	SOMTCommonEntryC Class
	somtTypeObj attribute
	somtPtrs attribute
	somtArrayDimsString attribute
	somtGetFirstArrayDimension method
	somtGetNextArrayDimension method
	somtSourceText attribute
	somtType attribute
	somtVisibility attribute
	somtIsArray method
	somtIsPointer method

	SOMTConstEntryC Class
	somtConstTypeObj attribute
	somtConstType attribute
	somtConstStringVal attribute
	somtConstNumVal attribute
	somtConstNumNegVal attribute
	somtConstIsNegative attribute
	somtConstVal attribute

	SOMTDataEntryC Class
	somtIsSelfRef attribute

	SOMTEmitC Class
	somtTemplate attribute
	somtTargetFile attribute
	somtTargetClass attribute
	somtTargetModule attribute
	somtTargetType attribute
	somtEmitterName attribute
	somtGenerateSections method
	somtOpenSymbolsFile method
	somtSetPredefinedSymbols method
	somtFileSymbols method
	somtEmitProlog method
	somtEmitBaseIncludesProlog method
	somtEmitBaseIncludes method
	somtEmitBaseIncludesEpilog method
	somtEmitMetaInclude method
	somtEmitClass method
	somtEmitMeta method
	somtEmitBaseProlog method
	somtEmitBase method
	somtEmitBaseEpilog method
	somtEmitPassthruProlog method
	somtEmitPassthru method
	somtEmitPassthruEpilog method
	somtEmitRelease method
	somtEmitDataProlog method
	somtEmitData method
	somtEmitDataEpilog method
	somtEmitAttributeProlog method
	somtEmitAttribute method
	somtEmitAttributeEpilog method
	somtEmitConstantProlog method
	somtEmitConstant method
	somtEmitConstantEpilog method
	somtEmitTypedefProlog method
	somtEmitTypedef method
	somtEmitTypedefEpilog method
	somtEmitStructProlog method
	somtEmitStruct method
	somtEmitStructEpilog method
	somtEmitUnionProlog method
	somtEmitUnion method
	somtEmitUnionEpilog method
	somtEmitEnumProlog method
	somtEmitEnum method
	somtEmitEnumEpilog method
	somtEmitInterfaceProlog method
	somtEmitInterface method
	somtEmitInterfaceEpilog method
	somtEmitModuleProlog method
	somtEmitModule method
	somtEmitModuleEpilog method
	somtEmitMethodsProlog method
	somtEmitMethods method
	somtEmitMethodsEpilog method
	somtEmitMethod method
	somtEmitEpilog method
	somtScanBases method
	somtScanBaseIncludes method
	somtCheckVisibility method
	somtNew method
	somtImplemented method
	somtOverridden method
	somtInherited method
	somtAllVisible method
	somtAll method
	somtNewNoProc method
	somtPrivOrPub method
	somtNewProc method
	somtLink method
	somtVA method
	somtScanMethods method
	somtScanConstants method
	somtScanTypedefs method
	somtScanStructs method
	somtScanUnions method
	somtScanEnums method
	somtScanData method
	somtScanAttributes method
	somtScanInterfaces method
	somtScanModules method
	somtScanPassthru method
	somtEmitFullPassthru method
	somtScanDataF method
	somtScanBasesF method
	somtGetGlobalModifierValue method
	somtGetFirstGlobalDefinition method
	somtGetNextGlobalDefinition method

	SOMTEntryC Class
	somtEntryName attribute
	somtElementType attribute
	somtElementTypeName attribute
	somtEntryComment attribute
	somtSourceLineNumber attribute
	somtTypeCode attribute
	somtIsReference attribute
	somtIDLScopedName attribute
	somtCScopedName attribute
	somtGetModifierValue method
	somtGetFirstModifier method
	somtGetNextModifier method
	somtFormatModifier method
	somtGetModifierList method
	somtSetSymbolsOnEntry method
	somtSetEntryStruct method

	SOMTEnumEntryC Class
	somtGetFirstEnumName method
	somtGetNextEnumName method

	SOMTEnumNameEntryC Class
	somtEnumPtr attribute
	somtEnumVal attribute

	SOMTMetaClassEntryC Class
	somtMetaFile attribute
	somtMetaClassDef attribute

	SOMTMethodEntryC Class
	somtIsVarargs attribute
	somtOriginalMethod attribute
	somtOriginalClass attribute
	somtMethodGroup attribute
	somtIsPrivateMethod attribute
	somtIsOneway attribute
	somtArgCount attribute
	somtGetFirstParameter method
	somtGetNextParameter method
	somtGetIDLParamList method
	somtGetShortCParamList method
	somtGetFullCParamList method
	somtGetShortParamNameList mwthod
	somtGetFullParamNameList method
	somtGetNthParameter mwthod
	somtGetFirstException method
	somtGetNextException method
	somtContextArray attribute
	somtCReturnType attribute

	SOMTModuleEntryC Class
	somtOuterModule attribute
	somtModuleFile attribute
	somtGetFirstModuleStruct method
	somtGetNextModuleStruct method
	somtGetFirstModuleTypedef method
	somtGetNextModuleTypedef method
	somtGetFirstModuleUnion method
	somtGetNextModuleUnion method
	somtGetFirstModuleEnum method
	somtGetNextModuleEnum method
	somtGetFirstModuleConstant mwthod
	somtGetNextModuleConstant mwthod
	somtGetFirstModuleSequence method
	somtGetNextModuleSequence method
	somtGetFirstInterface method
	somtGetNextInterface method
	somtGetFirstModule method
	somtGetNextModule method
	somtGetFirstModuleDef method
	somtGetNextModuleDef method

	SOMTParameterEntryC Class
	somtParameterDirection attribute
	somtIDLParameterDeclaration attribute
	somtCParameterDeclaration attribute
	somtPascalParameterDeclaration attribute

	SOMTPassthruEntryC Class
	somtPassthruBody attribute
	somtPassthruLanguage attribute
	somtPassthruTarget attribute
	somtIsBeforePassthru method

	SOMTSequenceEntryC Class
	somtSeqLength attribute
	somtSeqType attribute

	SOMTStringEntryC Class
	somtStringLength attribute

	SOMTStructEntryC Class
	somtGetFirstMember Method
	somtGetNextMember Method
	somtStructClass method
	somtIsException method

	SOMTTemplateOutputC Class
	somtAddSectionDefinitions Method
	somtCommentStyle attribute
	somtLineLength attribute
	somtCommentNewline attribute
	somtCheckSymbol Method
	somtExpandSymbol Method
	somtGetSymbol Method
	somto Method
	somtOutputComment Method
	somtOutputSection Method
	somtReadSectionDefinitions Method
	somtSetOutputFile Method
	somtSetSymbol Method
	somtSetSymbolCopyBoth Method
	somtSetSymbolCopyName Method
	somtSetSymbolCopyValue Method

	SOMTTypedefEntryC Class
	somtTypedefType attribute
	somtGetFirstDeclarator method
	somtGetNextDeclarator method

	SOMTUnionEntryC Class
	somtSwitchType attribute
	somtGetFirstCaseEntry method
	somtGetNextCaseEntry method

	SOMTUserDefinedTypeEntryC Class
	somtOriginalTypedef attribute
	somtBaseTypeObj attribute

	SOMStringTableC Class
	somstTargetCapacity attribute
	somstAssociationsCount attribute
	somstAssociate method
	somstAssociateCopyKey method
	somstAssociateCopyValue method
	somstAssociateCopyBoth method
	somstGetAssociation method
	somstClearAssociation method
	somstGetIthKey method
	somstGetIthValue method

	somtStrDup function
	somtEntryTypeName function
	somtShowEntry function
	somtStrCat function
	somtMakeIncludeStr function
	somtNewSymbol function
	somtGetFileStem function
	somtGetObjectWrapper function

	Appendixes
	1. Appendix 1. SOM ABI

	Список литературы

