
2026/02/17 05:39 1/8 Programmer's Guide

osFree wiki - https://osfree.su/doku/

Programmer's Guide

Introduction

somFree compiler is a tool to convert various interface definition languages to another one or
language bindings. somFree compiler frontend is a sc or somc command which control workflow.
Because somFree compiler and Emitter Framework modeled after IBM SOM Compiler from here SOM
Compiler term will be used. Most of somFree Compiler and Emitter Framework and SOM Compiler and
Emitter Framework are same and binary compatible at the documented level. Internal structures of
somFree and IBM versions are different.

Structure of SOM Compiler and Emitter Framwork

SOM Compiler at file level consist of:

SOM Compiler frontend
sc [Linux]
sc.exe [OS/2, Windows]
somc.exe [Windows]

IDL SOM Pre-processor
somcpp [Linux]
somcpp.exe [OS/2, Windows]

IDL SOM Compiler
somipc [Linux]
somipc.exe [OS/2, Windows]

OIDL SOM Pre-processor
spp [Linux]
spp.exe [OS/2, Windows]

OIDL SOM Compiler
somopc [Linux]
somopc.exe [OS/2, Windows]

SOM Compiler Library
somc.so [Linux]
somc.dll [OS/2, Windows]

SOM Emitter Framework
some.so [Linux]
some.dll [OS/2, Windows]

Emitters
emit*.so [Linux]
emit*.dll [OS/2, Windows]

Public IDL files generator
pdl [Linux]
pdl.exe [OS/2, Windows]

Currently SOM Compiler provides following emitters:

Last update: 2024/10/09 03:43 en:docs:tk:som:sc:pg https://osfree.su/doku/doku.php?id=en:docs:tk:som:sc:pg

https://osfree.su/doku/ Printed on 2026/02/17 05:39

IDL - IDL Emitter
CSC - OIDL Emitter
SC - OIDL public emitter
GEN - Generic Emitter
IR - Interface Repository Emitter
H - C Binding public header files
C - C Binding implementation template file
IH - C Binding implementation header files
XH - C++ Binding public header files
XIH - C++ Binding implementation header files
DEF - DEF Module Definition file
LNK - LNK Module Linking file
HC
IMOD - SOM Module initialization emitter
MODS - List of class modifiers
PDL - Private IDL emitter
PH
PSC - OIDL private emitter
UC
UXC
XPH
XTM
PAS - Pascal client library for use of SOM
IPAS - Pascal implementation library to write SOM classes.

Some of Emitters uses Templates such as:

cpp.efw
ctm.efw
gen_c.efc
gen_c.efs
gen_c.efw
gen_cpp.efw
gen_def.efw
gen_emit.efc
gen_emit.efs
gen_emit.efw
gen_emit.efx
gen_idl.efw
gen_make.efc
gen_make.efs
gen_make.efw
gen_make.efx
gen_mk32.efc
gen_mk32.efs
gen_mk32.efw
gen_mk32.efx
gen_mknt.efs
gen_mknt.efw
gen_mknt.efx
gen_nid.efw

2026/02/17 05:39 3/8 Programmer's Guide

osFree wiki - https://osfree.su/doku/

gen_temp.efw
imod.efw

Interaction of SOM Compiler components

Emitter Framework is a set of classes and SOM Compiler tool. Emitter Framework is used to produce
various file formats from the SOM Interface Definition Language files. Emitter Framework classes
consist of Emitter classes and Entry classes. Classes can be shadowed. This means a programmer can
replace original classes with his own classes. So the SOM Compiler can be highly customized. The only
things hard-coded (and closed source) are the IDL file reader and abstract graph builder.

Before starting description of Emitter Framework let's talk about SOM Compiler. We already talked
briefly about SOM Compiler. But for emitters we need to know internals of SOM Compiler much better.

Let's start from visible parts of SOM Compiler that requires for its work the following files:

sc.exe, somc.dll and somc.msg - Main part of compiler.
somcpp.exe - SOM Preprocessor
somipc.exe - Goals not known. Seems just execute different emitters
emit*.dll - Emitters
*.efw - Emitter templates

sc.exe is general part of compiler. Let's try to investigate some internals of sc.exe. First of all we can
switch on verbose output and look on it:

Running shell command:
somcpp -D__OS2__ -I. -IC:\os2tk45\h -IC:\os2tk45\idl -
IC:\os2tk45\som\include \
 -D__SOMIDL_VERSION_1__ -D__SOMIDL__ -C somobj.idl >
C:\var\temp\0a500000.CTN
somipc -mppfile=C:\var\temp\0a500000.CTN -v -e emith -e emitih -e emitctm -e
emitc \
 -o somobj somobj.idl
Loading emith.
"SOMObject"
Unloading emith.
Loading emitih.
"SOMObject"
Unloading emitih.
Loading emitctm.
"SOMObject"
Unloading emitctm.
Loading emitc.
"SOMObject"
Unloading emitc.
Removed "C:\var\temp\0a500000.CTN".

Not so many info, but some information here. If we look at SMINCLUDE environment variable:

Last update: 2024/10/09 03:43 en:docs:tk:som:sc:pg https://osfree.su/doku/doku.php?id=en:docs:tk:som:sc:pg

https://osfree.su/doku/ Printed on 2026/02/17 05:39

SMINCLUDE=.;C:\os2tk45\h;C:\os2tk45\idl;C:\os2tk45\som\include;

then we will see all paths in -I option.

Considering -D is same as for CPP we can see three symbols defined: * OS2 * SOMIDL_VERSION_1 *
SOMIDL somobj.idl it is file we emitted and CTN file is output from preprocessor. The only unknown
switch is -C. After small playing we can see it means “leave comments”.

So, we can try to replace somcpp with some preprocessor. In [http://www.osfree.org osFree] project
we tried to use [http://mcpp.sourceforge.net MCPP] preprocessor. Results is well.

sc.exe reads SMINCLUDE variable and puts its content to -I options of somcpp.exe and redirect output
to temporary file.

Ok. Now we can try to detect what is somipc.exe. If we try to execute it with command line pointed
above, then we will see: Loading emith. “SOMObject” Unloading emith. Loading emitih. “SOMObject”
Unloading emitih. Loading emitctm. “SOMObject” Unloading emitctm. Loading emitc. “SOMObject”
Unloading emitc.

Heh. Actually, somipc.exe is a real SOM Compiler. Not sc.exe. sc.exe only prepares the input file for
the compiler and handles command line and environment variables.

After some playing we can see, somipc returns 0 if all ok and -1 if error.

So, somipc.exe parses preprocessed IDL file and builds Abstract graph. From Abstract graph Object
Graph are build. After this somipc.exe calls one by one all emit*.dll files according to -e switches.
emit*.dll are set of DLLs with SOM classes.

Drawing here!!

SOM Compiler IDL SOM Preprocessor IDL SOM Compiler Emitter Template

 OIDL SOM Preprocessor OIDL SOM Compiler

Разрисовать по аналогии с со структурой, что в патентах и документации по SOM, но с учетом
наличия OIDL и SOMC.

SOM Compiler sc or somc is a frontend which controls basic workflow. Depending on source file
extension it call or IDL or OIDL pre-processor and, after preprocessing, IDL or OIDL compiler. IDL or
OIDL compiler builds abstract syntax graph using Entry structure. Entry structure contains information
about entry type, pointer to object wrapper and all information about object specific attributes.

Note! Entry structure is not documented and differs in somFree and IBM SOM versions.

IDL or OIDL calls required emitters with root Entry structure on emitter entry. Emitter requests root
object wrapper and, using or not using template faculty, process all graph using Object Syntax Graph.
Object Syntax Graph generates required Entry objects on demand.

Emitter is a subclass of 'SOMTEmitC' class. Emitter used to produce output file using template file
from object graph of the SOM Interface Definition Language file. Physically emitter represented as DLL
with name EMIT<identificator>.DLL. For C headers emith.dll emitter DLL is used. For C++ headers
emitxh.dll emitter DLL is used. Emitter DLL contains only one entry with ordinal 1 and name 'emit'.

http://www.osfree.org
http://mcpp.sourceforge.net
https://osfree.su/doku/doku.php?id=en:docs:tk:som:sc:somtemitc
https://osfree.su/doku/doku.php?id=en:docs:tk:som:sc:the_som_interface_definition_language

2026/02/17 05:39 5/8 Programmer's Guide

osFree wiki - https://osfree.su/doku/

SOMEXTERN FILE * SOMLINK emit(char *file, Entry * cls, Stab * stab);

'emit' function creates emitter object (from emitter class, which based on 'SOMTEmitC') and calls
'somtGenerateSections' method.

Usually an emitter file can be generated using 'newemit.cmd' script (can be found at Hobbes in
SOMObjects toolkit).

newemit -C <className> <file_stem>

To emitter passed Entry object which is root of Object Graph. The root object can be an interface or
module class. Processing of such classes slightly different.

Last part of Emitter Framework is template files. Template files allow you to make some control of
emitting process. Templates are usual text files with extension *.efw. Here you can modify output for
your wish. Not all emitters support templates.

So, now you have some imagination about that Emitter Framework is and how it works.

Template faculty

Emitters uses template faculty to produce output file. Template file has structure divided by sections.
Each section begins from section name ended by colon. Each emitter can use its own section names.
Refer to corresponding emitter and Entry classes description for section names information. Here is
template file example:

:copyrightS
This is example template
:templateS
/* Template output example */
<className>

Core of Template faculty is a Key-Value strings collection represented by SOMStringTableC class. All
substitutable to template values stored in SOMStringTableC class instance. On template file process,
First of all SOMTEmitC method somtSetPredefinedSymbols sets section names symbols. By default it
is following sections:

prologSN prologS
baseIncludesPrologSN baseIncludesPrologS
baseIncludesSN baseIncludesS
baseIncludesEpilogSN baseIncludesEpilogS
metaIncludeSN metaIncludeS
classSN classS
metaSN metaS
basePrologSN basePrologS
baseSN baseS
baseEpilogSN baseEpilogS
constantPrologSN constantPrologS

https://osfree.su/doku/doku.php?id=en:docs:tk:som:sc:somtemitc

Last update: 2024/10/09 03:43 en:docs:tk:som:sc:pg https://osfree.su/doku/doku.php?id=en:docs:tk:som:sc:pg

https://osfree.su/doku/ Printed on 2026/02/17 05:39

constantSN constantS
constantEpilogSN constantEpilogS
typedefPrologSN typedefPrologS
typedefSN typedefS
typedefEpilogSN typedefEpilogS
structPrologSN structPrologS
structSN structS
structEpilogSN structEpilogS
unionPrologSN unionPrologS
unionSN unionS
unionEpilogSN unionEpilogS
enumPrologSN enumPrologS
enumSN enumS
enumEpilogSN enumEpilogS
attributePrologSN attributePrologS
attributeSN attributeS
attributeEpilogSN attributeEpilogS
interfacePrologSN interfacePrologS
interfaceSN interfaceS
interfaceEpilogSN interfaceEpilogS
modulePrologSN modulePrologS
moduleSN moduleS
moduleEpilogSN moduleEpilogS
passthruPrologSN passthruPrologS
passthruSN passthruS
passthruEpilogSN passthruEpilogS
releaseSN releaseS
dataPrologSN dataPrologS
dataSN dataS
dataEpilogSN dataEpilogS
methodsPrologSN methodsPrologS
methodsSN methodsS
overrideMethodsSN overrideMethodsS
overriddenMethodsSN overriddenMethodsS
inheritedMethodsSN inheritedMethodsS
methodsEpilogSN methodsEpilogS
epilogSN epilogS

Generic Emitter

Generic emitter is a generic template based emitter. It uses simplest template with only one section
“template”. Main goal of Generic Emitter is to produce Generic framework emitter files. It is used by
newemit tool to produce full set of files required to build new emitter. Добавить описание символов
шаблона и описание, какой шаблон за что отвечает.

2026/02/17 05:39 7/8 Programmer's Guide

osFree wiki - https://osfree.su/doku/

DEF Emitter

DEF emitter used to generate definition file for DLL creation using MS LINK. somFree version of
emitter uses template file to generate DEF file. Original IBM SOM DEF Emitter uses hard coded
generation. Добавить описание символов шаблона.

LNK Emitter

LNK emitter used to generate linking file for DLL creation using Watcom WLINK. somFree version of
emitter uses template file to generate LNK file. Original IBM SOM DEF Emitter doesn't have such
emitter. Добавить описание символов шаблона.

CSC, PSC, SC Emitters

CSC emitter used to generate OIDL class definition file (CSC) used in IBM SOM 1.0. somFree version of
emitter uses template file to generate CSC file. Original IBM SOM CSC Emitter uses hard coded
generation. Добавить описание символов шаблона.

IDL, PDL Emitters

IDL emitter used to generate IDL class definition file used in IBM SOM 2.0 and higher. somFree version
of emitter uses template file to generate IDL file. Original IBM SOM IDL Emitter uses hard coded
generation. Добавить описание символов шаблона.

Developing new emitter

somFree Emitter Framework provides templates and libraries for developing emitters compatible with
both IBM SOM 2.1 and IBM SOM 3.0 compilers. Because of different ABI (refer Appendix 1 for more
information) somFree emitters automatically configures for corresponding API.

CORBA C Language mapping

somFree Compiler support CORBA C Language Mapping Specification 1.0 [1]. CORBA C Language
mapping slightly differ from SOM C Language mapping, used by original IBM SOM 2.1. CORBA C
Language mapping is default for somFree Compiler. This chapter provides short description of
mapping. For full description refer to [1].

Last update: 2024/10/09 03:43 en:docs:tk:som:sc:pg https://osfree.su/doku/doku.php?id=en:docs:tk:som:sc:pg

https://osfree.su/doku/ Printed on 2026/02/17 05:39

SOM C Language mapping

SOM C Language mapping is a IBM SOM mapping variant. For some reason (most probably because
variable arguments support) IBM SOM not exactly implements C Language Mapping Specification.

Tools Reference
MKMSGF MSGEXTRT MSGBIND BIND JWASM UNI IPFC
somFree Compiler and Emitter framework
User's Guide Programmer's Guide Programmer's Reference
2024/10/09 03:43 · prokushev · 0 Comments

From:
https://osfree.su/doku/ - osFree wiki

Permanent link:
https://osfree.su/doku/doku.php?id=en:docs:tk:som:sc:pg

Last update: 2024/10/09 03:43

https://osfree.su/doku/doku.php?id=en:docs:tk:tools:mkmsgf
https://osfree.su/doku/doku.php?id=en:docs:tk:tools:msgextrt
https://osfree.su/doku/doku.php?id=en:docs:tk:tools:msgbind
https://osfree.su/doku/doku.php?id=en:docs:tk:tools:bind
https://osfree.su/doku/doku.php?id=en:docs:tk:tools:jwasm
https://osfree.su/doku/doku.php?id=en:docs:tk:tools:uni
https://osfree.su/doku/doku.php?id=en:docs:tk:tools:ipfc
https://osfree.su/doku/doku.php?id=en:docs:tk:som:sc:ug
https://osfree.su/doku/doku.php?id=en:docs:tk:som:sc:pr
https://osfree.su/doku/doku.php?id=en:templates:tksomc#discussion__section
https://osfree.su/doku/
https://osfree.su/doku/doku.php?id=en:docs:tk:som:sc:pg

	Programmer's Guide
	Introduction
	Structure of SOM Compiler and Emitter Framwork
	Interaction of SOM Compiler components
	Template faculty
	Generic Emitter
	DEF Emitter
	LNK Emitter
	CSC, PSC, SC Emitters
	IDL, PDL Emitters
	Developing new emitter
	CORBA C Language mapping
	SOM C Language mapping

