2026/02/17 10:21

1/6 New Executable file format

Offset|Size |Name

Description

00h |WORD|e_magic

0x4d, 0x5a. This is the “magic number” of an EXE file. The first byte
of the file is O0x4d and the second is Ox5a.

02h |WORD|e cblp

The number of bytes in the last block of the program that are
actually used. If this value is zero, that means the entire last block is
used (i.e. the effective value is 512).

04h |WORD|e_cp

Number of blocks in the file that are part of the EXE file. If [02-03] is
non-zero, only that much of the last block is used.

06h |WORD|e_crlc

Number of relocation entries stored after the header. May be zero.

08h |WORD|e cparhdr

Number of paragraphs in the header. The program's data begins
just after the header, and this field can be used to calculate the
appropriate file offset. The header includes the relocation entries.
Note that some OSs and/or programs may fail if the header is not a
multiple of 512 bytes.

OAh (WORD|e_minalloc

Number of paragraphs of additional memory that the program will
need. This is the equivalent of the BSS size in a Unix program. The
program can't be loaded if there isn't at least this much memory
available to it.

0Ch |WORD|e_maxalloc

Maximum number of paragraphs of additional memory. Normally,
the OS reserves all the remaining conventional memory for your
program, but you can limit it with this field.

OEH |WORD|e_ss

Relative value of the stack segment. This value is added to the
segment the program was loaded at, and the result is used to
initialize the SS register.

10h |WORD|e_sp

Initial value of the SP register.

12h (WORD|e_csum

Word checksum. If set properly, the 16-bit sum of all words in the
file should be zero. Usually, this isn't filled in.

14h |WORD|e_ip

Initial value of the IP register.

16h |WORD|e_cs

Initial value of the CS register, relative to the segment the program
was loaded at.

18h |WORD|e_Ifarlc

Offset of the first relocation item in the file.

1Ah (WORD|e_ovno

Overlay number. Normally zero, meaning that it's the main
program.

1Ch |WORD|e res[ERESIWDS]

/* In-disk and In-memory module structure. See 'Windows Internals' p. 219 */

struct new_exe {

WORD
union {
struct {
BYTE

BYTE

ne magic;

ne ver;
ne_rev;
+;

WORD count;

I
WORD ne enttab;
beginning of

union {

/* Signature word EMAGIC */
/* Version number of the linker */
/* Revision number of the linker */
/* Usage count (ne ver/ne rev on disk) */
relative to the

/* Entry Table file offset,

the segmented EXE header */

osFree wiki - https://osfree.su/doku/

Last update: 2024/09/22 en:docs:tk:formats:newexe https://osfree.su/doku/doku.php?id=en:docs:tk:formats:newexe&rev=1726998016

09:40
WORD ne cbenttab; /* Number of bytes in the entry table */
WORD next; /* Selector to next module */

}i

union {
DWORD ne crc; /* 32-bit CRC of entire contents of file.

These words are taken as 00 during the
calculation */

struct {
WORD dgroup entry; /* Near ptr to segment entry for DGROUP */
WORD fileinfo; /* Near ptr to file info (OFSTRUCT)*/
}i
}i
WORD ne flags; /* Flag word */
WORD ne autodata; /* Segment number of automatic data
segment.
This value is set to zero if SINGLEDATA
and

MULTIPLEDATA flag bits are clear,
NOAUTODATA 1is
indicated in the flags word.

A Segment number is an index into the
module's segment
table. The first entry in the segment
table is segment
number 1 */
WORD ne_ heap; /* Initial size, in bytes, of dynamic
heap added to the
data segment. This value is zero if no
initial local
heap is allocated */
WORD ne stack; /* Initial size, in bytes, of stack
added to the data
segment. This value is zero to indicate

no initial
stack allocation, or when SS is not equal
to DS */
DWORD ne csip; /* Segment number:offset of CS:IP */
DWORD ne sssp; /* Segment number:offset of SS:SP.

If SS equals the automatic data segment
and SP equals

zero, the stack pointer is set to the top
of the

automatic data segment just below the
additional heap

area.
L +
| additional dynamic heap |
R L T + <- SP

https://osfree.su/doku/ Printed on 2026/02/17 10:21

2026/02/17 10:21 3/6 New Executable file format

| additional stack |

T +
| loaded auto data segment |
L R + <- DS, SS */
WORD ne cseg; /* Number of entries in the Segment
Table */
WORD ne_cmod; /* Number of entries in the Module
Reference Table */
WORD ne cbnrestab; /* Number of bytes in the Non-Resident
Name Table */
WORD ne segtab; /* Segment Table file offset, relative to

the beginning
of the segmented EXE header */
WORD ne rsrctab; /* Resource Table file offset, relative to
the beginning
of the segmented EXE header */
WORD ne restab; /* Resident Name Table file offset, relative
to the
beginning of the segmented EXE header */
WORD ne modtab; /* Module Reference Table file offset,
relative to the
beginning of the segmented EXE header */
WORD ne_ imptab; /* Imported Names Table file offset,
relative to the
beginning of the segmented EXE header */
DWORD ne nrestab; /* Non-Resident Name Table offset,
relative to the
beginning of the file */

WORD ne cmovent; /* Number of movable entries in the Entry
Table */
WORD ne_align; /* Logical sector alignment shift count,

log(base 2) of
the segment sector size (default 9) */

WORD ne cres; /* Number of resource entries */

BYTE ne_exetyp; /* Executable type, used by loader.
02h = WINDOWS */

BYTE ne flagsothers; /* Operating system flags */

char ne res[NERESBYTES]; /* Reserved */

¥

On-disk segment entry struct new_seg { WORD ns_sector; /* Logical-sector offset (n byte) to the
contents of the segment data, relative to the beginning of the file. Zero means no file data */ WORD
ns_cbseg; /* Length of the segment in the file, in bytes. Zero means 64K */ WORD ns_flags; /* Flag
word */ WORD ns_minalloc; /* Minimum allocation size of the segment, in bytes. Total size of the
segment. Zero means 64K */ },; In-memory segment entry struct new_segl {

WORD nsl sector; /* Logical-sector offset (n byte) to the
contents of the segment
data, relative to the beginning of the
file. Zero means no

osFree wiki - https://osfree.su/doku/

Last update: 2024/09/22
09:40

en:docs:tk:formats:newexe https://osfree.su/doku/doku.php?id=en:docs:tk:formats:newexe&rev=1726998016

file data */

WORD nsl cbseg; /* Length of the segment in the file, in

bytes. Zero means 64K */

WORD nsl flags; /* Flag word */
/* Minimum allocation size of the

WORD nsl minalloc;
segment, in bytes. Total size

of the segment. Zero means 64K */

WORD nsl handle; /* Selector or handle (selector - 1) of

segment in memory */

¥

struct new_segdata {

union {

struct {
WORD ns niter;
WORD ns_ nbytes;
char ns_iterdata;

} ns iter;

struct {
char ns data;

} ns _noniter;
} ns_union;

¥
struct new_rlcinfo {
WORD nr_nreloc;

¥

struct new_rlc {

char nr_stype;
char nr flags;
WORD nr_soff;
union {
struct {
char nr_segno;
char nr_res;

WORD nr_entry;
} nr_intref;
struct {
WORD nr_mod;
WORD nr_proc;
} nr_import;
struct {
WORD nr_ostype;
WORD nr_osres;

https://osfree.su/doku/

Printed on 2026/02/17 10:21

2026/02/17 10:21 5/6 New Executable file format

} nr_osfix;
} nr_union;

}

#define NR_STYPE(x) (x).nr_stype #define NR_FLAGS(x) (x).nr_flags #define NR_SOFF(x) (x).nr_soff
#define NR_SEGNO(x) (x).nr_union.nr_intref.nr_segno #define NR_RES(x) (x).nr_union.nr_intref.nr_res
#define NR_ENTRY(x) (x).nr_union.nr_intref.nr_entry #define NR_MOD(x)
(x).nr_union.nr_import.nr_mod #define NR_PROC(x) (x).nr_union.nr_import.nr_proc #define
NR_OSTYPE(x) (x).nr_union.nr_osfix.nr_ostype #define NR_OSRES(x) (x).nr_union.nr_osfix.nr_osres

#define NRSTYP 0x0f #define NRSBYT 0x00 #define NRSSEG 0x02 #define NRSPTR 0x03 #define
NRSOFF 0x05 #define NRPTR48 0x06 #define NROFF32 0x07 #define NRSOFF32 0x08

#define NRADD 0x04 #define NRRTYP 0x03 #define NRRINT 0x00 #define NRRORD 0x01 #define
NRRNAM 0x02 #define NRROSF 0x03 #define NRICHAIN 0x08

#if (EXE386 == 0)
#define RS_LEN(x) (x).rs_len #define RS_STRING(x) (x).rs_string #define RS_ALIGN(x) (x).rs_align
#define RT_ID(x) (x).rt_id #define RT_NRES(x) (x).rt_nres #define RT_PROC(x) (x).rt_proc

#define RN_OFFSET(x) (x).rn_offset #define RN_LENGTH(x) (x).rn_length #define RN_FLAGS(x)
(x).rn_flags #define RN_ID(x) (x).rn_id #define RN_HANDLE(x) (x).rn_handle #define RN_USAGE(x)
(x).rn_usage

#define RSORDID 0x8000

#define RNMOVE 0x0010 #define RNPURE 0x0020 #define RNPRELOAD 0x0040 #define RNDISCARD
0xF000

#define NE_FFLAGS_LIBMODULE 0x8000

struct rsrc_string {

char rs_len;
char rs string[1];

}
struct rsrc_typeinfo {
WORD rt id;

WORD rt nres;
DWORD rt _proc;

b
struct rsrc_nameinfo {

WORD rn_offset;
WORD rn_length;

osFree wiki - https://osfree.su/doku/

Last update: 2024/09/22

en:docs:tk:formats:newexe https://osfree.su/doku/doku.php?id=en:docs:tk:formats:newexe&rev=1726998016

09:40
WORD rn_flags;
WORD rn_id;
WORD rn _handle;
WORD rn usage;
b

struct new rsrc {

WORD

rs align;

struct rsrc_typeinfo

¥
#endif

#pragma pack(pop)

rs typeinfo;

#ifdef _ cplusplus } /* extern “C" */ #endif

#endif

From:

https://osfree.su/doku/ - osFree wiki

Permanent link:

https://osfree.su/doku/doku.php?id=en:docs:tk:formats:newexe&rev=1726998016

Last update: 2024/09/22 09:40

https://osfree.su/doku/

Printed on 2026/02/17 10:21

https://osfree.su/doku/
https://osfree.su/doku/doku.php?id=en:docs:tk:formats:newexe&rev=1726998016

