
2026/02/17 16:58 1/9 DosExecPgm

osFree wiki - https://osfree.su/doku/

DosExecPgm

This call allows a program to request that another program execute as a child process.

Syntax

DosExecPgm (ObjNameBuf, ObjNameBufL, ExecFlags, ArgPointer,

 EnvPointer, ReturnCodes, PgmPointer)

Parameters

ObjNameBuf (PCHAR) - output : Address of the name of the object that contributed to the failure
of DosExecPgm is returned.
ObjNameBufL (SHORT) - input : Length, in bytes, of the buffer described by ObjNameBuf.
ExecFlags (USHORT) - input : Indicates how the program executes in relation to the requestor
and whether execution is under conditions for debugging.

0 - Execution is synchronous to the parent process. The termination code and result code
are stored in the two-word structure.
1 - Execution is asynchronous to the parent process. When the child process terminates,
its result code is discarded. The process ID is stored in the first word of the two-word
structure ReturnCodes.
2 - Execution is asynchronous to the parent process. When the child process terminates,
its result code is saved for examination by a DosCWait request. The process ID is stored in
the first word of the two-word structure ReturnCodes.
3 - Execution is the same as if ExecFlags=2 is specified, plus debugging conditions are
present for the child process.
4 - Execution is asynchronous to and detached from the parent process session. When the
detached process is started, it is not affected by the ending of the parent process.
5 - The program is loaded into storage and made ready to execute, but is not placed into
execution until the session manager dispatches the threads belonging to the process.
6 - Execution is the same as if ExecFlag=2 is specified, with the addition of debugging
conditions being present for the child process and any of its descendants.

Some memory is consumed for uncollected result codes. Issue DosCWait to release this memory. If
result codes are not collected, then ExecFlags=0 or 1 should be used.

*ArgPointer (PSZ) - input : Address of the ASCIIZ Argument strings passed to
the program. These strings represent command parameters, which are copied to
the environment segment of the new process. The convention used by CMD.EXE
is that the first of these strings is the program name (as entered from the
command prompt or found in a batch file), and the second string consists of
parameters to the program name. The second ASCIIZ string is followed by an

https://osfree.su/doku/lib/exe/detail.php?id=en%3Adocs%3Afapi%3Adosexecpgm&media=logos:os2.gif
https://osfree.su/doku/lib/exe/detail.php?id=en%3Adocs%3Afapi%3Adosexecpgm&media=logos:dos.gif

Last update: 2018/08/26 09:28 en:docs:fapi:dosexecpgm https://osfree.su/doku/doku.php?id=en:docs:fapi:dosexecpgm&rev=1535275739

https://osfree.su/doku/ Printed on 2026/02/17 16:58

additional byte of zeros. A value of 0 for the address of ArgPointer means
that no arguments are to be passed.
*EnvPointer(PSZ) - input : Address of the ASCIIZ environment strings passed
to the program. These strings represent environment variables and their
current values. An environment string has the following form:

variable=value The last ASCIIZ environment string must be followed by an additional byte of zeros.

A value of 0 for the address of EnvPointer results in the new process inheriting the environment of its
parent process.

When the new process is given control, it receives:

A pointer to its environment segment
The fully qualified path name of the executable file
A copy of the argument strings.

A coded example of this follows:

eo: ASCIIZ string 1 ; environment string 1
 ASCIIZ string 2 ; environment string 2
 .
 :
 ASCIIZ string n ; environment string n
 Byte of 0
 .
 :
po: ASCIIZ ; string of filename
 ; of program to run.
 .
 :
ao: ASCIIZ ; argument string 1
 ASCIIZ ; argument string 2
 Byte of 0

The beginning of the environment segment is “eo” and “ao” is the offset of the first argument string
in that segment. Register BX contains “ao” on entry to the target program. The address to the
environment segment can also be obtained by issuing DosGetInfoSeg.

*ReturnCodes (PRESULTCODES) - output : Address of the structure containing
the process ID or termination code and the result code indicating the reason
for the child's termination. This structure is also used by a DosCWait
request, which waits for an asynchronous child process to end.
*termcodepid (USHORT) : For an asynchronous request, the process identifier
of the child process. For a synchronous request, the termination code
furnished by the system describes why the child terminated.
 *0 - EXIT (normal)
 *1 - Hard error abort
 *2 - Trap operation
 *3 - Unintercepted DosKillProcess
*resultcode (USHORT) : Result code specified by the terminating synchronous

https://osfree.su/doku/doku.php?id=en:docs:fapi:dosgetinfoseg

2026/02/17 16:58 3/9 DosExecPgm

osFree wiki - https://osfree.su/doku/

process on its last DosExit call.
*PgmPointer (PSZ) - input : Address of the name of the file that contains
the program to be executed. When the environment is passed to the target
program, this name is copied into "po" in the environment description shown
above.

If the string appears to be a fully qualified path (it contains a “:” in the second position - or it contains
a “\” - or both), then the file name must include the extension .COM or .EXE, and the program is
loaded from the indicated drive:directory. If the string is not a fully qualified path, the current
directory is searched. If the file name is not found in the current directory, each drive:directory
specification in the PATH defined in the current process' environment is searched for this file.

Return Code

rc (USHORT) - return Return code descriptions are:

0 NO_ERROR
1 ERROR_INVALID_FUNCTION
2 ERROR_FILE_NOT_FOUND
3 ERROR_PATH_NOT_FOUND
4 ERROR_TOO_MANY_OPEN_FILES
5 ERROR_ACCESS_DENIED
8 ERROR_NOT_ENOUGH_MEMORY
10 ERROR_BAD_ENVIRONMENT
11 ERROR_BAD_FORMAT
13 ERROR_INVALID_DATA
26 ERROR_NOT_DOS_DISK
32 ERROR_SHARING_VIOLATION
33 ERROR_LOCK_VIOLATION
36 ERROR_SHARING_BUFFER_EXCEEDED
89 ERROR_NO_PROC_SLOTS
95 ERROR_INTERRUPT
108 ERROR_DRIVE_LOCKED
127 ERROR_PROC_NOT_FOUND
180 ERROR_INVALID_SEGMENT_NUMBER
182 ERROR_INVALID_ORDINAL
188 ERROR_INVALID_STARTING_CODESEG
189 ERROR_INVALID_STACKSEG
190 ERROR_INVALID_MODULETYPE
191 ERROR_INVALID_EXE_SIGNATURE
192 ERROR_EXE_MARKED_INVALID
194 ERROR_ITERATED_DATA_EXCEEDS_64k
195 ERROR_INVALID_MINALLOCSIZE
196 ERROR_DYNLINK_FROM_INVALID_RING
198 ERROR_INVALID_SEGDPL
199 ERROR_AUTODATASEG_EXCEEDS_64k
201 ERROR_RELOC_CHAIN_XEEDS_SEGLIM

Last update: 2018/08/26 09:28 en:docs:fapi:dosexecpgm https://osfree.su/doku/doku.php?id=en:docs:fapi:dosexecpgm&rev=1535275739

https://osfree.su/doku/ Printed on 2026/02/17 16:58

Remarks

The target program is located and loaded into storage if necessary. A process is created and executed
for the target program. The new process is created with an address space separate from its parent;
that is, a new Local Descriptor Table (LDT) is built for the process.

The execution of a child process can be synchronous or asynchronous to the execution of its parent
process. If synchronous execution is indicated, the requesting thread waits pending completion of the
child process. Other threads in the requesting process may continue to run.

If asynchronous execution is indicated, DosExecPgm returns with the process ID of the started child
process. Specifying ExecFlags=2 allows the parent process to issue a DosCWait request after the
DosExecPgm request, so it can examine the result code returned when the child process terminates.
If ExecFlags=1 is specified, the result code of the asynchronous child process is not returned to the
parent process.

A child process inherits file handles obtained by its parent with DosOpen calls that indicated
inheritance . The child process also inherits handles to pipes created by the parent process with
DosMakePipe.

Because a child process has the ability to inherit handles and a parent process controls the meanings
of handles for standard I/O, the parent can duplicate inherited handles as handles for standard I/O.
This permits the parent process and the child process to coordinate I/O to a pipe or a file.

For example, a parent process can create two pipes with DosMakePipe requests. It can issue
DosDupHandle to redefine the read handle of one pipe as standard input (0000H), and the write
handle of the other pipe as standard output (0001H). The child process uses the standard I/O handles,
and the parent process uses the remaining read and write pipe handles. Thus, the child process reads
what the parent writes to one pipe, and the parent process reads what the child writes to the other
pipe.

When an inherited file handle is duplicated, the position of the file pointer is always the same for both
handles, regardless of which handle repositions the file pointer.

An asynchronous process started with ExecFlags=3 or ExecFlags=6 is provided a trace flag facility.
This facility and the Ptrace buffer provided by DosPtrace enable a debugger to perform breakpoint
debugging. DosStartSession provides additional debugging capabilities that allow a debugger to trace
all processes associated with an application running in a child session, regardless of whether the
process is started with a DosExecPgm or a DosStartSession request.

A detached process is treated as an orphan of the parent process and executes in the background.
Thus, it cannot make any VIO, KBD, or MOU calls, except within a video pop-up requested by
VioPopUp. To test whether a program is running detached, use the following method. Issue a video
call, (for example, VioGetAnsi). If the call is not issued within a video pop-up and the process is
detached, the video call returns error code ERROR_VIO_DETACHED.

Note: If the target program's entry point is in a segment that has IOPL indicated, this causes a general
protection fault and the process is terminated. If any dynamic link module being used by the new
process has an initialization routine specified in a segment that has IOPL indicated, general protection
fault occurs and the process is terminated.

2026/02/17 16:58 5/9 DosExecPgm

osFree wiki - https://osfree.su/doku/

Family API Considerations

Some options operate differently in DOS mode than in OS/2 mode. Therefore, the following
restrictions apply to DosExecPgm when coding in DOS mode:

ExecFlags must be set to zero. This value is not related to the PID of the program being
executed. If ExecFlags <> 0, DosExecPgm returns the error code ERROR_INVALID_DATA.
The ObjNameBuf field is used to provide additional information in the OS/2 mode environment
as to why the DosExecPgm failed. The information is not relevant or available in DOS 2.X or
DOS 3.X. Therefore, the buffer is filled in with blanks.
The ReturnCodes two-word structure is very similar to the OS/2 mode environment. The first
word is a termination code with the following meanings:

0 - Exit (normal exit and termination by call INT 21H AH=31H)
1 - Hard error abort
2 - Not returned
3 - Termination by Ctrl -Break.

The second word contains the ResultCode specified by the terminating process on its DosExit call (or
INT 21H AH=4CH call).

Application Type Considerations

You may use DosExecPgm to start a process that is of the same type as the starting process. Process
types include Presentation Manager, text-windowed, and full-screen. You may not use DosExecPgm to
start a process that is of a different type than the starting process.

You must use DosStartSession to start a new process from a process that is of a different type. For
example, use DosStartSession to start a Presentation Manager process from a non-Presentation
Manager process.

Bindings

C

typedef struct _RESULTCODES { /* resc */

 USHORT codeTerminate; /* Termination Code -or- Process ID */
 USHORT codeResult; /* Exit Code */

} RESULTCODES;

#define INCL_DOSPROCESS

USHORT rc = DosExecPgm(ObjNameBuf, ObjNameBufL, ExecFlags, ArgPointer,
 EnvPointer, ReturnCodes, PgmPointer);

PCHAR ObjNameBuf; /* Address of object name buffer (returned) */

Last update: 2018/08/26 09:28 en:docs:fapi:dosexecpgm https://osfree.su/doku/doku.php?id=en:docs:fapi:dosexecpgm&rev=1535275739

https://osfree.su/doku/ Printed on 2026/02/17 16:58

SHORT ObjNameBufL; /* Length of object name buffer */
USHORT ExecFlags; /* Execute asynchronously/trace */
PSZ ArgPointer; /* Address of argument string */
PSZ EnvPointer; /* Address of environment string */
PRESULTCODES ReturnCodes; /* Address of termination codes (returned) */
PSZ PgmPointer; /* Address of program file name */

USHORT rc; /* return code */

MASM

RESULTCODES struc

resc_codeTerminate dw ? ;Termination Code -or- Process ID

resc_codeResult dw ? ;Exit Code

RESULTCODES ends

EXTRN DosExecPgm:FAR
INCL_DOSPROCESS EQU 1

PUSH@ OTHER ObjNameBuf ;Object name buffer (returned)
PUSH WORD ObjNameBufL ;Length of object name buffer
PUSH WORD ExecFlags ;Execute asynchronously/trace
PUSH@ ASCIIZ ArgPointer ;Address of argument string
PUSH@ ASCIIZ EnvPointer ;Address of environment string
PUSH@ DWORD ReturnCodes ;Termination codes (returned)
PUSH@ ASCIIZ PgmPointer ;Program file path name string
CALL DosExecPgm

Returns WORD

Example Code

This example starts up the program simple.exe and then waits for it to finish. Then the termination
and return codes are printed.

 #define INCL_DOSPROCESS
 #define START_PROGRAM "simple.exe"

 CHAR LoadError[100];
 PSZ Args;
 PSZ Envs;
 RESULTCODES ReturnCodes;
 USHORT rc;

 if(!DosExecPgm(LoadError, /* Object name buffer */

2026/02/17 16:58 7/9 DosExecPgm

osFree wiki - https://osfree.su/doku/

 sizeof(LoadError), /* Length of object name buffer */
 EXEC_SYNC, /* Asynchronous/Trace flags */
 Args, /* Argument string */
 Envs, /* Environment string */
 &ReturnCodes, /* Termination codes */
 START_PROGRAM)) /* Program file name */
 printf("Termination Code %d Return Code %d \n",
 ReturnCodes.codeTerminate,
 ReturnCodes.codeResult);

– simple.exe –

#define INCL_DOSPROCESS
#define RETURN_CODE 0

main()
{
 printf("Hello!\n");
 DosExit(EXIT_PROCESS, /* End thread/process */
 RETURN_CODE); /* Result code */
}

The following example demonstrates how to create a process, obtain process ID information, and kill a
process. Process1 invokes process2 to run asynchronously. It obtains and prints some PID
information, and then kills process2.

/* ---- process1.c ---- */
#define INCL_DOSPROCESS
#include <os2.h>
#define START_PROGRAM "process2.exe" /* Program pointer */

main()
{
 CHAR ObjFail [50]; /* Object name buffer */
 RESULTCODES ReturnCodes; /* */
 PIDINFO PidInfo;
 PID ParentID; /* */
 USHORT rc;

 printf("Process1 now running. \n");

 /** Start a child process. **/
 if(!(DosExecPgm(ObjFail, /* Object name buffer */
 sizeof(ObjFail), /* Length of obj. name buffer */
 EXEC_ASYNC, /* Execution flag - asynchronous */
 NULL, /* No args. to pass to process2*/
 NULL, /* Process2 inherits process1's
environment */
 &ReturnCodes, /* Ptr. to resultcodes struct. */
 START_PROGRAM))) /* Name of program file */
 printf("Process2 started. \n");

Last update: 2018/08/26 09:28 en:docs:fapi:dosexecpgm https://osfree.su/doku/doku.php?id=en:docs:fapi:dosexecpgm&rev=1535275739

https://osfree.su/doku/ Printed on 2026/02/17 16:58

 /** Obtain Process ID information and print it **/
 if(!(rc=DosGetPID(&PidInfo))) /* Process ID's (returned) */
 printf("DosGetPID: current process ID is %d; thread ID is %d; parent
process ID is %d.\n",
 PidInfo.pid, PidInfo.tid, PidInfo.pidParent);
 if(!(rc=DosGetPPID(
 ReturnCodes.codeTerminate, /* Process whose parent is wanted */
 &ParentID))) /* Address to put parent's PID */
 printf("Child process ID is %d; Parent process ID is %d.\n",
 ReturnCodes.codeTerminate, ParentID);

 /** Terminate process2 **/
 if(!(rc=DosKillProcess(DKP_PROCESSTREE, /* Action code - kill process
and descendants */
 ReturnCodes.codeTerminate))) /* PID of root of process tree
*/
 printf("Process2 terminated by process1.\n");
}

/* ---- process2.c ---- */
#define INCL_DOSPROCESS
#include <os2.h>
#define SLEEPTIME 500L
#define RETURN_CODE 0

main()
{
 printf("Process2 now running.\n");

 /* Sleep to allow process1 to kill it */
 DosSleep(SLEEPTIME); /* Sleep interval */
 DosExit(EXIT_PROCESS, /* Action Code */
 RETURN_CODE); /* Result Code */
}

Note

This text based on www.edm2.com/index.php

https://osfree.su/doku/doku.php?id=en:docs:fapi:www.edm2.com_index.php&title=DosExecPgm_(FAPI)

2026/02/17 16:58 9/9 DosExecPgm

osFree wiki - https://osfree.su/doku/

Family API

DOS

Process
Manager DosBeep DosExit DosSleep DosExecPgm

File Manager

DosChDir DosChgFilePtr DosClose DosDelete DosDupHandle DosMkDir DosMove
DosQCurDir DosQCurDisk DosSetFileMode DosOpen DosQFileInfo DosRead
DosQFileMode DosQFSInfo DosQVerify DosRmDir DosSelectDisk DosFindClose
DosFindFirst DosFindNext DosSetFileInfo DosSetVerify DosWrite DosFileLocks
DosSetFHandState DosNewSize DosBufReset DosQFHandState DosSetFSinfo
DosShutdown

Memory
Manager

DosFreeSeg DosSubAlloc DosSubFree DosSubSet DosAllocHuge DosAllocSeg
DosReallocHuge DosReallocSeg DosGetHugeShift DosCreateCSAlias

NLS DosCaseMap DosGetCtryInfo DosGetDBCSEv DosSetCtryCode DosGetCollate
DosGetMessage DosInsMessage DosPutMessage

Date and
Time DosSetDateTime DosGetDateTime

Devices DosDevConfig DosDevIOCtl DosDevIOCtl2
Signals DosHoldSignal DosSetSigHandler

Misc BadDynLink DosGetEnv DosGetMachineMode DosGetVersion DosError DosErrClass
DosSetVec

KBD KbdCharIn KbdFlushBuffer KbdGetStatus KbdSetStatus KbdStringIn KbdPeek

VIO

VioGetBuf VioGetConfig VioGetCurPos VioGetCurType VioGetPhysBuf
VioReadCellStr VioReadCharStr VioScrollUp VioScrollDn VioScrollLf VioScrollRt
VioScrUnLock VioSetCurPos VioSetCurType VioSetMode VioGetMode VioShowBuf
VioWrtCellStr VioWrtCharStr VioWrtCharStrAtt VioWrtNAttr VioWrtNCell
VioWrtNChar VioWrtTTY VioScrLock VioPopUp

Tools BIND
Modules DOSCALLS.DLL VIOCALLS.DLL KBDCALLS.DLL MSG.DLL
Libraries API.LIB OS2386.LIB FAPI.LIB DOSCALLS.LIB SUBCALLS.LIB
2018/08/25 15:05 · prokushev · 0 Comments

From:
https://osfree.su/doku/ - osFree wiki

Permanent link:
https://osfree.su/doku/doku.php?id=en:docs:fapi:dosexecpgm&rev=1535275739

Last update: 2018/08/26 09:28

https://osfree.su/doku/doku.php?id=en:docs:fapi
https://osfree.su/doku/doku.php?id=en:docs:fapi:dosbeep
https://osfree.su/doku/doku.php?id=en:docs:fapi:dosexit
https://osfree.su/doku/doku.php?id=en:docs:fapi:dossleep
https://osfree.su/doku/doku.php?id=en:docs:fapi:doschdir
https://osfree.su/doku/doku.php?id=en:docs:fapi:doschgfileptr
https://osfree.su/doku/doku.php?id=en:docs:fapi:dosclose
https://osfree.su/doku/doku.php?id=en:docs:fapi:dosdelete
https://osfree.su/doku/doku.php?id=en:docs:fapi:dosduphandle
https://osfree.su/doku/doku.php?id=en:docs:fapi:dosmkdir
https://osfree.su/doku/doku.php?id=en:docs:fapi:dosmove
https://osfree.su/doku/doku.php?id=en:docs:fapi:dosqcurdir
https://osfree.su/doku/doku.php?id=en:docs:fapi:dosqcurdisk
https://osfree.su/doku/doku.php?id=en:docs:fapi:dossetfilemode
https://osfree.su/doku/doku.php?id=en:docs:fapi:dosopen
https://osfree.su/doku/doku.php?id=en:docs:fapi:dosqfileinfo
https://osfree.su/doku/doku.php?id=en:docs:fapi:dosread
https://osfree.su/doku/doku.php?id=en:docs:fapi:dosqfilemode
https://osfree.su/doku/doku.php?id=en:docs:fapi:dosqfsinfo
https://osfree.su/doku/doku.php?id=en:docs:fapi:dosqverify
https://osfree.su/doku/doku.php?id=en:docs:fapi:dosrmdir
https://osfree.su/doku/doku.php?id=en:docs:fapi:dosselectdisk
https://osfree.su/doku/doku.php?id=en:docs:fapi:dosfindclose
https://osfree.su/doku/doku.php?id=en:docs:fapi:dosfindfirst
https://osfree.su/doku/doku.php?id=en:docs:fapi:dosfindnext
https://osfree.su/doku/doku.php?id=en:docs:fapi:dossetfileinfo
https://osfree.su/doku/doku.php?id=en:docs:fapi:dossetverify
https://osfree.su/doku/doku.php?id=en:docs:fapi:doswrite
https://osfree.su/doku/doku.php?id=en:docs:fapi:dosfilelocks
https://osfree.su/doku/doku.php?id=en:docs:fapi:dossetfhandstate
https://osfree.su/doku/doku.php?id=en:docs:fapi:dosnewsize
https://osfree.su/doku/doku.php?id=en:docs:fapi:dosbufreset
https://osfree.su/doku/doku.php?id=en:docs:fapi:dosqfhandstate
https://osfree.su/doku/doku.php?id=en:docs:fapi:dossetfsinfo
https://osfree.su/doku/doku.php?id=en:docs:fapi:dosshutdown
https://osfree.su/doku/doku.php?id=en:docs:fapi:dosfreeseg
https://osfree.su/doku/doku.php?id=en:docs:fapi:dossuballoc
https://osfree.su/doku/doku.php?id=en:docs:fapi:dossubfree
https://osfree.su/doku/doku.php?id=en:docs:fapi:dossubset
https://osfree.su/doku/doku.php?id=en:docs:fapi:dosallochuge
https://osfree.su/doku/doku.php?id=en:docs:fapi:dosallocseg
https://osfree.su/doku/doku.php?id=en:docs:fapi:dosreallochuge
https://osfree.su/doku/doku.php?id=en:docs:fapi:dosreallocseg
https://osfree.su/doku/doku.php?id=en:docs:fapi:dosgethugeshift
https://osfree.su/doku/doku.php?id=en:docs:fapi:doscreatecsalias
https://osfree.su/doku/doku.php?id=en:docs:fapi:doscasemap
https://osfree.su/doku/doku.php?id=en:docs:fapi:dosgetctryinfo
https://osfree.su/doku/doku.php?id=en:docs:fapi:dosgetdbcsev
https://osfree.su/doku/doku.php?id=en:docs:fapi:dossetctrycode
https://osfree.su/doku/doku.php?id=en:docs:fapi:dosgetcollate
https://osfree.su/doku/doku.php?id=en:docs:fapi:dosgetmessage
https://osfree.su/doku/doku.php?id=en:docs:fapi:dosinsmessage
https://osfree.su/doku/doku.php?id=en:docs:fapi:dosputmessage
https://osfree.su/doku/doku.php?id=en:docs:fapi:dossetdatetime
https://osfree.su/doku/doku.php?id=en:docs:fapi:dosgetdatetime
https://osfree.su/doku/doku.php?id=en:docs:fapi:dosdevconfig
https://osfree.su/doku/doku.php?id=en:docs:fapi:dosdevioctl
https://osfree.su/doku/doku.php?id=en:docs:fapi:dosdevioctl2
https://osfree.su/doku/doku.php?id=en:docs:fapi:dosholdsignal
https://osfree.su/doku/doku.php?id=en:docs:fapi:dossetsighandler
https://osfree.su/doku/doku.php?id=en:docs:fapi:baddynlink
https://osfree.su/doku/doku.php?id=en:docs:fapi:dosgetenv
https://osfree.su/doku/doku.php?id=en:docs:fapi:dosgetmachinemode
https://osfree.su/doku/doku.php?id=en:docs:fapi:dosgetversion
https://osfree.su/doku/doku.php?id=en:docs:fapi:doserror
https://osfree.su/doku/doku.php?id=en:docs:fapi:doserrclass
https://osfree.su/doku/doku.php?id=en:docs:fapi:dossetvec
https://osfree.su/doku/doku.php?id=en:docs:fapi:kbdcharin
https://osfree.su/doku/doku.php?id=en:docs:fapi:kbdflushbuffer
https://osfree.su/doku/doku.php?id=en:docs:fapi:kbdgetstatus
https://osfree.su/doku/doku.php?id=en:docs:fapi:kbdsetstatus
https://osfree.su/doku/doku.php?id=en:docs:fapi:kbdstringin
https://osfree.su/doku/doku.php?id=en:docs:fapi:kbdpeek
https://osfree.su/doku/doku.php?id=en:docs:fapi:viogetbuf
https://osfree.su/doku/doku.php?id=en:docs:fapi:viogetconfig
https://osfree.su/doku/doku.php?id=en:docs:fapi:viogetcurpos
https://osfree.su/doku/doku.php?id=en:docs:fapi:viogetcurtype
https://osfree.su/doku/doku.php?id=en:docs:fapi:viogetphysbuf
https://osfree.su/doku/doku.php?id=en:docs:fapi:vioreadcellstr
https://osfree.su/doku/doku.php?id=en:docs:fapi:vioreadcharstr
https://osfree.su/doku/doku.php?id=en:docs:fapi:vioscrollup
https://osfree.su/doku/doku.php?id=en:docs:fapi:vioscrolldn
https://osfree.su/doku/doku.php?id=en:docs:fapi:vioscrolllf
https://osfree.su/doku/doku.php?id=en:docs:fapi:vioscrollrt
https://osfree.su/doku/doku.php?id=en:docs:fapi:vioscrunlock
https://osfree.su/doku/doku.php?id=en:docs:fapi:viosetcurpos
https://osfree.su/doku/doku.php?id=en:docs:fapi:viosetcurtype
https://osfree.su/doku/doku.php?id=en:docs:fapi:viosetmode
https://osfree.su/doku/doku.php?id=en:docs:fapi:viogetmode
https://osfree.su/doku/doku.php?id=en:docs:fapi:vioshowbuf
https://osfree.su/doku/doku.php?id=en:docs:fapi:viowrtcellstr
https://osfree.su/doku/doku.php?id=en:docs:fapi:viowrtcharstr
https://osfree.su/doku/doku.php?id=en:docs:fapi:viowrtcharstratt
https://osfree.su/doku/doku.php?id=en:docs:fapi:viowrtnattr
https://osfree.su/doku/doku.php?id=en:docs:fapi:viowrtncell
https://osfree.su/doku/doku.php?id=en:docs:fapi:viowrtnchar
https://osfree.su/doku/doku.php?id=en:docs:fapi:viowrttty
https://osfree.su/doku/doku.php?id=en:docs:fapi:vioscrlock
https://osfree.su/doku/doku.php?id=en:docs:fapi:viopopup
https://osfree.su/doku/doku.php?id=en:docs:os2:modules:doscalls
https://osfree.su/doku/doku.php?id=en:docs:os2:modules:viocalls
https://osfree.su/doku/doku.php?id=en:docs:os2:modules:kbdcalls
https://osfree.su/doku/doku.php?id=en:docs:os2:modules:msg
https://osfree.su/doku/doku.php?id=en:docs:fapi:libraries:api
https://osfree.su/doku/doku.php?id=en:docs:fapi:libraries:fapi
https://osfree.su/doku/doku.php?id=en:templates:fapi#discussion__section
https://osfree.su/doku/
https://osfree.su/doku/doku.php?id=en:docs:fapi:dosexecpgm&rev=1535275739

	DosExecPgm
	Syntax
	Parameters
	Return Code
	Remarks
	Family API Considerations
	Application Type Considerations
	Bindings

	C
	MASM
	Example Code
	Note

